首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Going round in circles: shape effects in the Ebbinghaus illusion   总被引:1,自引:0,他引:1  
Rose D  Bressan P 《Spatial Vision》2002,15(2):191-203
The Ebbinghaus illusion has traditionally been considered as either a sensory or a cognitive illusion, or some combination of these two. Cognitive contrast explanations take support from the way the illusion varies with the degree of shape similarity between the test and inducing elements; we show, however, that contour interaction explanations may account for this result too. We therefore tested these alternative theories by measuring the illusion with different test shapes as well as different inducer shapes, in all combinations. We found that for angular or hexagonal test shapes there is no similarity effect, and for some shape combinations there is no significant illusion, in contradiction to both of the traditional hypotheses. Instead, we suggest that an integrated model of visual processing is needed to account for the illusion.  相似文献   

2.
 There is a no unique relationship between the trajectory of the hand, represented in cartesian or extrinsic space, and its trajectory in joint angle or intrinsic space in the general condition of joint redundancy. The goal of this work is to analyze the relation between planning the trajectory of a multijoint movement in these two coordinate systems. We show that the cartesian trajectory can be planned based on the task parameters (target coordinates, etc.) prior to and independently of angular trajectories. Angular time profiles are calculated from the cartesian trajectory to serve as a basis for muscle control commands. A unified differential equation that allows planning trajectories in cartesian and angular spaces simultaneously is proposed. Due to joint redundancy, each cartesian trajectory corresponds to a family of angular trajectories which can account for the substantial variability of the latter. A set of strategies for multijoint motor control following from this model is considered; one of them coincides with the frog wiping reflex model and resolves the kinematic inverse problem without inversion. The model trajectories exhibit certain properties observed in human multijoint reaching movements such as movement equifinality, straight end-point paths, bell-shaped tangential velocity profiles, speed-sensitive and speed-insensitive movement strategies, peculiarities of the response to double-step targets, and variations of angular trajectory without variations of the limb end-point trajectory in cartesian space. In humans, those properties are almost independent of limb configuration, target location, movement duration, and load. In the model, these properties are invariant to an affine transform of cartesian space. This implies that these properties are not a special goal of the motor control system but emerge from movement kinematics that reflect limb geometry, dynamics, and elementary principles of motor control used in planning. All the results are given analytically and, in order to compare the model with experimental results, by computer simulations. Received: 6 April 1994/Accepted in revised form: 25 April 1995  相似文献   

3.
Line transect sampling is a distance sampling method for estimating the abundance of wild animal populations. One key assumption of this method is that all animals are detected at their initial location. Animal movement independent of the transect and observer can thus cause substantial bias. We present an analytic expression for this bias when detection within the transect is certain (strip transect sampling) and use simulation to quantify bias when detection falls off with distance from the line (line transect sampling). We also explore the non-linear relationship between bias, detection, and animal movement by varying detectability and movement type. We consider animals that move in randomly orientated straight lines, which provides an upper bound on bias, and animals that are constrained to a home range of random radius. We find that bias is reduced when animal movement is constrained, and bias is considerably smaller in line transect sampling than strip transect sampling provided that mean animal speed is less than observer speed. By contrast, when mean animal speed exceeds observer speed the bias in line transect sampling becomes comparable with, and may exceed, that of strip transect sampling. Bias from independent animal movement is reduced by the observer searching further perpendicular to the transect, searching a shorter distance ahead and by ignoring animals that may overtake the observer from behind. However, when animals move in response to the observer, the standard practice of searching further ahead should continue as the bias from responsive movement is often greater than that from independent movement.  相似文献   

4.
Sampling rate effects on measurements of correlated and biased random walks   总被引:2,自引:0,他引:2  
When observing the two-dimensional movement of animals or microorganisms, it is usually necessary to impose a fixed sampling rate, so that observations are made at certain fixed intervals of time and the trajectory is split into a set of discrete steps. A sampling rate that is too small will result in information about the original path and correlation being lost. If random walk models are to be used to predict movement patterns or to estimate parameters to be used in continuum models, then it is essential to be able to quantify and understand the effect of the sampling rate imposed by the observer on real trajectories. We use a velocity jump process with a realistic reorientation model to simulate correlated and biased random walks and investigate the effect of sampling rate on the observed angular deviation, apparent speed and mean turning angle. We discuss a method of estimating the values of the reorientation parameters used in the original random walk from the rediscretized data that assumes a linear relation between sampling time step and the parameter values.  相似文献   

5.
Sogo H  Osaka N 《Spatial Vision》2007,20(3):265-276
'Perisaccadic mislocalization' is an illusion in which a stimulus presented briefly near the time of saccade onset is mislocalized. The amount of mislocalization depends on the stimulus location and the stimulus onset time relative to saccade onset. It is unclear whether perisaccadic mislocalization distorts the shape perception of a single object. To investigate this problem, we asked participants to report whether the apparent shape of a triangle presented for 10 ms before saccade was slanted in the same direction or the opposite direction as the saccade. The results showed that the apparent shape of the triangle was distorted in the direction opposite to the saccade. We compared this apparent distortion with the mislocalization of a perisaccadic vertical bar, and found that the time-course and direction of the distortion were similar, although the amount of distortion was smaller for the triangle. A hypothetical explanation for these results based on the forward/inverse optics model was discussed.  相似文献   

6.
Morphologies of moving amoebae are categorized into two types. One is the "neutrophil" type in which the long axis of cell roughly coincides with its moving direction. This type of cell extends a leading edge at the front and retracts a narrow tail at the rear, whose shape has been often drawn as a typical amoeba in textbooks. The other one is the "keratocyte" type with widespread lamellipodia along the front side arc. Short axis of cell in this type roughly coincides with its moving direction. In order to understand what kind of molecular feature causes conversion between two types of morphologies, and how two typical morphologies are maintained, a mathematical model of amoebic cells is developed. This model describes movement of cell and intracellular reactions of activator, inhibitor and actin filaments in a unified way. It is found that the producing rate of activator is a key factor of conversion between two types. This model also explains the observed data that the keratocyte type cells tend to rapidly move along a straight line. The neutrophil type cells move along a straight line when the moving velocity is small, but they show fluctuated motions deviating from a line when they move as fast as the keratocyte type cells. Efficient energy consumption in the neutrophil type cells is predicted.  相似文献   

7.
Whether fundamental visual attributes, such as color, motion, and shape, are analyzed separately in specialized pathways has been one of the central questions of visual neuroscience. Although recent studies have revealed various forms of cross-attribute interactions, including significant contributions of color signals to motion processing, it is still widely believed that color perception is relatively independent of motion processing. Here, we report a new color illusion, motion-induced color mixing, in which moving bars, the color of each of which alternates between two colors (e.g., red and green), are perceived as the mixed color (e.g., yellow) even though the two colors are never superimposed on the retina. The magnitude of color mixture is significantly stronger than that expected from direction-insensitive spatial integration of color signals. This illusion cannot be ascribed to optical image blurs, including those induced by chromatic aberration, or to involuntary eye movements of the observer. Our findings indicate that color signals are integrated not only at the same retinal location, but also along a motion trajectory. It is possible that this neural mechanism helps us to see veridical colors for moving objects by reducing motion blur, as in the case of luminance-based pattern perception.  相似文献   

8.
The authors studied fused auditory image (FAI) movement trajectories under conditions of direct nonsimultaneous masking. This movement was created by a gradual change in a dichotically presented series of clicks with interaural differences in stimulation from 0 to ±700 s or from ±700 to 0 s. Binaurally presented transmissions of wide-band noise served as maskers. The location and length of the trajectories were evaluated without a masker and with five values of the time lag between the signal beginning and masker end. When the test signal duration was 200 ms, the length of the trajectories was 33–44° without a masker. In the first test group, this trajectory lay close to the median line of the head without a masker (irrespective of the movement direction) and moved away from it under masking conditions. When the FAI moved from the median line towards the right or left ear, the initial part of the trajectory was masked; when the movement direction was opposite, the final part was masked. In the second group, the trajectories were located near the ears when the FAI moved from either ear and shifted towards the median line as a result of masking. When the movement direction was opposite, they were close to the median line and shifted towards the ear under masking conditions. When the FAI moved along all trajectories, their initial parts were masked.  相似文献   

9.
Most quadruped reptiles,such as lizards,salamanders and crocodiles,swing their waists while climbing on horizontal or vertical surfaces.Accompanied by body movement,the centroid trajectory also becomes more of a zigzag path rather than a straight line.Inspired by gecko's gait and posture on a vertical surface,a gecko inspired model with one pendular waist and four active axil legs,which is called GPL model,is proposed.Relationship between the waist position,dynamic gait,and driving forces on supporting feet is analyzed.As for waist trajectory planning,a singular line between the supporting feet is found and its effects on driving forces are discussed.Based on the GPL model,it is found that a sinusoidal waist trajectory,rather than a straight line,makes the driving forces on the supporting legs smaller.Also,a waist close to the pygal can reduce the driving forces compared to the one near middle vertebration,which is in accord with gecko's body bending in the process of climbing.The principles of configuration design and gait planning are proposed based on theoretical analyses.Finally,a bio-inspired robot DracoBot is developed and both of the driving force measurements and climbing experiments reinforce theoretical analysis and the rationality of gecko's dynamic gait.  相似文献   

10.
We determined some biophysical properties of human granulocytes, monocytes, and lymphocytes in respect to their locomotion. Granulocytes were exposed to plasma and were allowed to crawl on uncoated or glycol methacrylate coated glass plates. Monocytes did not migrate on uncoated glass, but did so on glycol methacrylated glass. Lymphocytes did not move on glass or glycol methacrylated glass, but moved on plexiglas coverslips. Granulocytes and monocytes showed a pronounced, directed movement towards a lysed erythrocyte (necrotaxis), lymphocytes showed no necrotactic response. The information collected by the granulocytes and monocytes in the necrotactic gradient was between 1 and 2 bits. This small amount of information indicated that the cellular decision in favor of a new direction of migration is based on a mechanism involving instability. We showed that the necrotactic response of granulocytes and monocytes is the product of the chemokinetic activity and the polar order parameter (= McCutcheon index) indicating that the cellular decision for a new direction of migration is independent of the speed of the cell movement. The movement of monocytes can be characterized in a similar way to that of granulocytes: the angle of deviation from a straight line path is nearly a fixed value (+/- 35 degrees). Lymphocytes stay in a restricted area after straight line movement. Particular attention was focused on cellular properties involved in locomotion. The characteristic time of the internal clock controlling the locomotion was 0.9 minutes for granulocytes and 2 minutes for monocytes. We were not able to determine the characteristic time of lymphocytes. We were able to determine the internal program responsible for the change in direction of movement. The directional memory time for granulocytes was 0.9 minutes. Monocytes had two directional memory times, short (2 minutes) and long (greater than 18 minutes). Lymphocytes had a very short directional memory time of 40 seconds. The distribution of the track velocities of migrating granulocytes and monocytes was described by bell shaped curves indicating homogeneous populations of cells. The distribution for lymphocytes had two maxima.  相似文献   

11.
The perception of apparent movement   总被引:1,自引:0,他引:1  
When two similar pictures, overlapping but slightly displaced, were projected on a screen in alternation, apparent movement could be seen. How similar must successive pictures be to give apparent movement? This is the 'correspondence problem'. Manipulations of the local and global correspondences between pictures included motion phenomena such as reversed apparent movement; a four-stroke oscillatory cycle which gave an illusion of continuous motion in one direction; edges defined by texture, stereoscopic depth, or flicker, kinetic edges; and wave motion. It was concluded that human motion perception may comprise two separate mechanisms. Local point-by-point correlations between pictures are detected by a relatively peripheral system, probably based on directonally selective neural units. More subtle global correspondences are analysed by a more cognitive system which extracts edges before it process motion.  相似文献   

12.
Free-ranging marine predators rarely search for prey along straight lines because dynamic ocean processes usually require complex search strategies. If linear movement patterns occur they are usually associated with travelling events or migratory behaviour. However, recent fine scale tracking of flying seabirds has revealed straight-line movements while birds followed fishing vessels. Unlike flying seabirds, penguins are not known to target and follow fishing vessels. Yet yellow-eyed penguins from New Zealand often exhibit directed movement patterns while searching for prey at the seafloor, a behaviour that seems to contradict common movement ecology theories. While deploying GPS dive loggers on yellow-eyed penguins from the Otago Peninsula we found that the birds frequently followed straight lines for several kilometres with little horizontal deviation. In several cases individuals swam up and down the same line, while some of the lines were followed by more than one individual. Using a remote operated vehicle (ROV) we found a highly visible furrow on the seafloor most likely caused by an otter board of a demersal fish trawl, which ran in a straight line exactly matching the trajectory of a recent line identified from penguin tracks. We noted high abundances of benthic scavengers associated with fisheries-related bottom disturbance. While our data demonstrate the acute way-finding capabilities of benthic foraging yellow-eyed penguins, they also highlight how hidden cascading effects of coastal fisheries may alter behaviour and potentially even population dynamics of marine predators, an often overlooked fact in the examination of fisheries’ impacts.  相似文献   

13.
The movements studied involved moving the tip of a pointer attached to the hand from a given starting point to a given end point in a horizontal plane. Three joints--the shoulder, elbow and wrist--were free to move. Thus the system represented a redundant manipulator. The coordination of the movements of the three joints was recorded and analyzed. The study concerned how the joints are controlled during a movement. The results are used to evaluate several current hypotheses for motor control. Basically, the incremental changes are calculated so as to move the tip of the manipulator along a straight line in the workspace. The values of the individual joints seem to be determined as follows. Starting from the initial values the incremental changes in the three joint angles represent a compromise between two criteria: 1) the amount of the angular change should be about the same in the three joints, and 2) the angular changes should minimize the total cost of the arm position as determined by cost functions defined for each joint as a function of angle. By itself, this mechanism would produce strongly curved trajectories in joint space which could include additional acceleration and deceleration in a joint. These are reduced by the influence of a third criterion which fits with the mass-spring hypothesis. Thus the path is calculated as a compromise between a straight line in workspace and a straight line in joint space. The latter can produce curved paths in the workspace such as were actually found in the experiments. A model calculation shows that these hypotheses can qualitatively describe the experimental findings.  相似文献   

14.
Abstract.  1. Host plant finding in walking herbivorous beetles is still poorly understood. Analysis of small-scale movement patterns under semi-natural conditions can be a useful tool to detect behavioural responses towards host plant cues.
2. In this study, the small-scale movement behaviour of the monophagous leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) was studied in a semi-natural arena ( r = 1 m). In three different settings, a host ( Salvia pratensis L., Lamiales: Lamiaceae), a non-host ( Rumex conglomeratus Murr., Caryophyllales: Polygonaceae), or no plant was presented in the centre of the arena.
3. The beetles showed no differences in the absolute movement variables, straightness and mean walking speed, between the three settings. However, the relative movement variables, mean distance to the centre and mean angular deviation from walking straight to the centre, were significantly smaller when a host plant was offered. Likewise, the angular deviation from walking straight to the centre tended to decline with decreasing distance from the centre. Finally, significantly more beetles were found on the host than on the non-host at the end of all the trials.
4. It is concluded that C. canaliculata is able to recognise its host plant from a distance. Whether olfactory or visual cues (or a combination of both) are used to find the host plant remains to be elucidated by further studies.  相似文献   

15.
Stationary objects appear to move in the opposite direction to a pursuit eye movement (Filehne illusion) and moving objects appear slower when pursued (Aubert-Fleischl phenomenon). Both illusions imply that extra-retinal, eye-velocity signals lead to lower estimates of speed than corresponding retinal motion signals. Intriguingly, the velocity (i.e. speed and direction) of the Filehne illusion depends on the age of the observer, especially for brief display durations (Wertheim and Bekkering, 1992). This suggests relative signal size changes as the visual system matures. To test the signal-size hypothesis, we compared the Filehne illusion and Aubert-Fleischl phenomenon in young and old observers using short and long display durations. The trends in the Filehne data were similar to those reported by Wertheim and Bekkering. However, we found no evidence for an effect of age or duration in the Aubert-Fleischl phenomenon. The differences between the two illusions could not be reconciled on the basis of actual eye movements made. The findings suggest a more complicated explanation of the combined influence of age and duration on head-centred motion perception than that described by the signal-size hypothesis.  相似文献   

16.
Optic flow, the pattern of apparent motion elicited on the retina during movement, has been demonstrated to be widely used by animals living in the aerial habitat, whereas underwater optic flow has not been intensively studied so far. However optic flow would also provide aquatic animals with valuable information about their own movement relative to the environment; even under conditions in which vision is generally thought to be drastically impaired, e. g. in turbid waters. Here, we tested underwater optic flow perception for the first time in a semi-aquatic mammal, the harbor seal, by simulating a forward movement on a straight path through a cloud of dots on an underwater projection. The translatory motion pattern expanded radially out of a singular point along the direction of heading, the focus of expansion. We assessed the seal''s accuracy in determining the simulated heading in a task, in which the seal had to judge whether a cross superimposed on the flow field was deviating from or congruent with the actual focus of expansion. The seal perceived optic flow and determined deviations from the simulated heading with a threshold of 0.6 deg of visual angle. Optic flow is thus a source of information seals, fish and most likely aquatic species in general may rely on for e. g. controlling locomotion and orientation under water. This leads to the notion that optic flow seems to be a tool universally used by any moving organism possessing eyes.  相似文献   

17.
Motor learning in the context of arm reaching movements has been frequently investigated using the paradigm of force-field learning. It has been recently shown that changes to somatosensory perception are likewise associated with motor learning. Changes in perceptual function may be the reason that when the perturbation is removed following motor learning, the hand trajectory does not return to a straight line path even after several dozen trials. To explain the computational mechanisms that produce these characteristics, we propose a motor control and learning scheme using a simplified two-link system in the horizontal plane: We represent learning as the adjustment of desired joint-angular trajectories so as to achieve the reference trajectory of the hand. The convergence of the actual hand movement to the reference trajectory is proved by using a Lyapunov-like lemma, and the result is confirmed using computer simulations. The model assumes that changes in the desired hand trajectory influence the perception of hand position and this in turn affects movement control. Our computer simulations support the idea that perceptual change may come as a result of adjustments to movement planning with motor learning.  相似文献   

18.
Motile sperm were videotaped after removal from the uterus and isthmus of the oviducts of female mice 1 h after mating with congenic males carrying none, one, or two t complexes. Males carrying one t complex (tw32/+) are fertile, and sperm carrying the t complex have an advantage in fertilization; males carrying two complexes (tw32/t0) are sterile. For each sperm, 2 sec of movement of the head-midpiece junction were traced from the videotape. For each tracing, five motility parameters were used: curvilinear velocity (Vc), and index of the sperm's mean swimming speed; coefficient of variation of move length (CVML), an index of speed constancy; progressiveness ratio (PR), an index of all deviation of the sperm's movement from a straight line; linear index (LI), an index of the straightness of the sperm's trajectory; and curvilinear progressiveness ratio (PRc), an index of the degree of lateral oscillation about that trajectory. Uterine sperm from fertile males were progressive, with straight trajectories and little lateral oscillation. There were no consistent differences in any motility parameter between uterine sperm from tw32/+ and congenic +/+ males. Uterine sperm from sterile tw32/t0 males were extremely slow and showed very little progressive movement, which could explain their lack of transport to the oviduct. For all fertile males, isthmic oviductal sperm differed significantly from uterine sperm in every motility parameter except Vc: isthmic sperm were less consistent in swimming speed, and less progressive with less straight trajectories and more lateral movement. One or more of these motility characteristics may be related to hyperactivation. A large proportion of isthmic sperm from tw32/+ males had nonlinear trajectories (LI less than .50); these nonlinear sperm were faster than nonlinear isthmic sperm from congenic +/+ males. These motility characteristics of isthmic sperm from tw32/+ males may be related to hyperactivation, or to their previously observed abnormal transport within the oviduct.  相似文献   

19.
The Müller-Lyer illusion is a classical geometric illusion in which the apparent (perceived) length of a line depends on whether the line terminates in an arrow tail or arrowhead. This effect may be caused by economic compensation for the gap between the physical stimulus and visual fields. Here, we show that the Müller-Lyer illusion can also be produced by the foraging patterns of garden ants (Lasius niger) and that the pattern obtained can be explained by a simple, asynchronously updated foraging ant model. Our results suggest that the geometric illusion may be a byproduct of the foraging process, in which local interactions underlying efficient exploitation can also give rise to global exploration, and that visual information processing in human could implement similar modulation between local efficient processing and widespread computation.  相似文献   

20.
Organisms move through the world by changing their shape, and here we explore the mapping from shape space to movements in the nematode Caenorhabditis elegans as it crawls on an agar plate. We characterize the statistics of the trajectories through the correlation functions of the orientation angular velocity, orientation angle and the mean-squared displacement, and we find that the loss of orientational memory has significant contributions from both abrupt, large amplitude turning events and the continuous dynamics between these events. Further, we discover long-time persistence of orientational memory in the intervals between abrupt turns. Building on recent work demonstrating that C. elegans movements are restricted to a low-dimensional shape space, we construct a map from the dynamics in this shape space to the trajectory of the worm along the agar. We use this connection to illustrate that changes in the continuous dynamics reveal subtle differences in movement strategy that occur among mutants defective in two classes of dopamine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号