首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Liu  J Liu    K B Strby 《Nucleic acids research》1998,26(22):5102-5108
Guanosine at position 26 in eukaryotic tRNAs is usually modified to N2 , N2 -dimethylguanosine (m22G26). In Saccharomyces cerevisiae , this reaction is catalysed by the TRM1 encoded tRNA (m22G26)dimethyltransferase. As a prerequisite for future studies, the yeast TRM1 gene was expressed in Escherichia coli and the His-tagged Trm1 protein (rTrm1p) was extensively purified. rTrm1p catalysed both the mono- and dimethylation of G26 in vivo in Escherichia coli tRNA and in vitro in yeast trm1 mutant tRNA. The TRM1 gene from two independent wild-type yeast strains differed at 14 base positions causing two amino acid exchanges . Exchange of the original Ser467 for Leu caused a complete loss of enzyme activity in vitro against trm1 yeast tRNA. Comparatively short N- or C-terminal deletions from the 570 amino acid long Trm1 polypeptide decreased or eliminated the enzyme activity, as did some point mutations within these regions. This indicated that the protein is not a two domain peptide with the enzyme activity localised to one of the domains, but rather that both ends of the polypeptide seem to interact to influence the conformation of those parts that make up the RNA-binding site and/or the active site of the enzyme.  相似文献   

2.
N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.  相似文献   

3.
Liu J  Zhou GQ  Stråby KB 《Gene》1999,226(1):73-81
It has been estimated that eukaryotes carry more than 50 genes for tRNA modifying enzymes. Of the few so far identified most come from yeast, a lower eukaryote. In Saccharomyces cerevisiae, the TRM1 gene is a nuclear gene encoding the tRNA(m2/ 2G(26))dimethyltransferase, which catalyses the formation of the N2, N2-dimethylguanosine at position 26 in tRNA. We have isolated and characterized the corresponding gene ZC376.5 in Caenorhabditis elegans. Via RTPCR the cDNA sequence of the full length ZC376.5 has now been cloned, expressed in Escherichia coli and demonstrated to encode a tRNA(m2/2G(26))dimethyltransferase that produces dimethyl-G26 in vivo and in vitro with tRNA from yeast and bacteria as substrates. This is the first example of a complete gene sequence coding for a tRNA modifying enzyme from a multicellular organism. A point mutation in exon IV in the C. elegans genome sequence coding for the tRNA(m2/2G(26))methyltransferase that substituted arginine246 for glycine eliminated the modification activity. Exchanging the corresponding lysine residue in the yeast Trm1p for alanine caused a severe loss of activity, indicating that the identity of the amino acid at this position is important for enzyme activity.  相似文献   

4.
The TRM5 gene encodes a tRNA (guanine-N1-)-methyltransferase (Trm5p) that methylates guanosine at position 37 (m(1)G37) in cytoplasmic tRNAs in Saccharomyces cerevisiae. Here we show that Trm5p is also responsible for m(1)G37 methylation of mitochondrial tRNAs. The TRM5 open reading frame encodes 499 amino acids containing four potential initiator codons within the first 48 codons. Full-length Trm5p, purified as a fusion protein with maltose-binding protein, exhibited robust methyltransferase activity with tRNA isolated from a Delta trm5 mutant strain, as well as with a synthetic mitochondrial initiator tRNA (tRNA(Met)(f)). Primer extension demonstrated that the site of methylation was guanosine 37 in both mitochondrial tRNA(Met)(f) and tRNA(Phe). High pressure liquid chromatography analysis showed the methylated product to be m(1)G. Subcellular fractionation and immunoblotting of a strain expressing a green fluorescent protein-tagged version of the TRM5 gene revealed that the enzyme was localized to both cytoplasm and mitochondria. The slightly larger mitochondrial form was protected from protease digestion, indicating a matrix localization. Analysis of N-terminal truncation mutants revealed that a Trm5p active in the cytoplasm could be obtained with a construct lacking amino acids 1-33 (Delta1-33), whereas production of a Trm5p active in the mitochondria required these first 33 amino acids. Yeast expressing the Delta1-33 construct exhibited a significantly lower rate of oxygen consumption, indicating that efficiency or accuracy of mitochondrial protein synthesis is decreased in cells lacking m(1)G37 methylation of mitochondrial tRNAs. These data suggest that this tRNA modification plays an important role in reading frame maintenance in mitochondrial protein synthesis.  相似文献   

5.
The degenerate base at position 34 of the tRNA anticodon is the target of numerous modification enzymes. In Saccharomyces cerevisiae, five tRNAs exhibit a complex modification of uridine 34 (mcm5U34 and mcm5s2U34), the formation of which requires at least 25 different proteins. The addition of the last methyl group is catalyzed by the methyltransferase Trm9p. Trm9p interacts with Trm112p, a 15-kDa protein with a zinc finger domain. Trm112p is essential for the activity of Trm11p, another tRNA methyltransferase, and for Mtq2p, an enzyme that methylates the translation termination factor eRF1/Sup45. Here, we report that Trm112p is required in vivo for the formation of mcm5U34 and mcm5s2U34. When produced in Escherichia coli, Trm112p forms a complex with Trm9p, which renders the latter soluble. This recombinant complex catalyzes the formation of mcm5U34 on tRNA in vitro but not mcm5s2U34. An mtq2-0 trm9-0 strain exhibits a synthetic growth defect, thus revealing the existence of an unexpected link between tRNA anticodon modification and termination of translation. Trm112p is associated with other partners involved in ribosome biogenesis and chromatin remodeling, suggesting that it has additional roles in the cell.  相似文献   

6.
7.
8.
Fusions between the TRM1 gene of Saccharomyces cerevisiae and COXIV or DHFR were made to examine the mitochondrial targeting signals of N2,N2-dimethylguanosine-specific tRNA methyltransferase [tRNA (m2(2)G)dimethyltransferase]. This enzyme is responsible for the modification of both mitochondrial and cytoplasmic tRNAs. We have previously shown that two forms of the enzyme are translated from two in-frame ATGs in this gene, that they differ by a 16-amino-acid amino-terminal extension, and that both the long and short forms are imported into mitochondria. Results of studies to test the ability of various TRM1 sequences to serve as surrogate mitochondrial targeting signals for passenger protein import in vitro and in vivo showed that the most efficient signal derived from tRNA (m2(2)G)dimethyltransferase included a combination of sequences from both the amino-terminal extension and the amino terminus of the shorter form of the enzyme. The amino-terminal extension itself did not serve as an independent mitochondrial targeting signal, whereas the amino terminus of the shorter form of tRNA (m2(2)G)dimethyltransferase did function in this regard, albeit inefficiently. We analyzed the first 48 amino acids of tRNA (m2(2)G)dimethyltransferase for elements of primary and secondary structure shared with other known mitochondrial targeting signals. The results lead us to propose that the most efficient signal spans the area around the second ATG of TRM1 and is consistent with the idea that there is a mitochondrial targeting signal present at the amino terminus of the shorter form of the enzyme and that the amino-terminal extension augments this signal by extending it to form a larger, more efficient mitochondrial targeting signal.  相似文献   

9.
In Saccharomyces cerevisiae, a two-subunit methyltransferase (Mtase) encoded by the essential genes TRM6 and TRM61 is responsible for the formation of 1-methyladenosine, a modified nucleoside found at position 58 in tRNA that is critical for the stability of tRNA(Met)i The crystal structure of the homotetrameric m1A58 tRNA Mtase from Mycobacterium tuberculosis, TrmI, has been solved and was used as a template to build a model of the yeast m1A58 tRNA Mtase heterotetramer. We altered amino acids in TRM6 and TRM61 that were predicted to be important for the stability of the heteroligomer based on this model. Yeast strains expressing trm6 and trm61 mutants exhibited growth phenotypes indicative of reduced m1A formation. In addition, recombinant mutant enzymes had reduced in vitro Mtase activity. We demonstrate that the mutations introduced do not prevent heteroligomer formation and do not disrupt binding of the cofactor S-adenosyl-L-methionine. Instead, amino acid substitutions in either Trm6p or Trm61p destroy the ability of the yeast m1A58 tRNA Mtase to bind tRNA(Met)i, indicating that each subunit contributes to tRNA binding and suggesting a structural alteration of the substrate-binding pocket occurs when these mutations are present.  相似文献   

10.
tRNA:m5C methyltransferase Trm4 generates the modified nucleotide 5-methylcytidine in archaeal and eukaryotic tRNA molecules, using S-adenosyl-l-methionine (AdoMet) as methyl donor. Most archaea and eukaryotes possess several Trm4 homologs, including those related to diseases, while the archaeon Methanocaldococcus jannaschii has only one gene encoding a Trm4 homolog, MJ0026. The recombinant MJ0026 protein catalyzed AdoMet-dependent methyltransferase activity on tRNA in vitro and was shown to be the M. jannaschii Trm4. We determined the crystal structures of the substrate-free M. jannaschii Trm4 and its complex with sinefungin at 1.27 Å and 2.3 Å resolutions, respectively. This AdoMet analog is bound in a negatively charged pocket near helix α8. This helix can adopt two different conformations, thereby controlling the entry of AdoMet into the active site. Adjacent to the sinefungin-bound pocket, highly conserved residues form a large, positively charged surface, which seems to be suitable for tRNA binding. The structure explains the roles of several conserved residues that were reportedly involved in the enzymatic activity or stability of Trm4p from the yeast Saccharomyces cerevisiae. We also discuss previous genetic and biochemical data on human NSUN2/hTrm4/Misu and archaeal PAB1947 methyltransferase, based on the structure of M. jannaschii Trm4.  相似文献   

11.
We previously isolated the RNC1/TRM2 gene and provided evidence that it encodes a protein with a possible role in DNA double strand break repair. RNC1 was independently re-isolated as the TRM2 gene encoding a methyl transferase involved in tRNA maturation. Here we show that Trm2p purified as a fusion protein displayed 5' --> 3' exonuclease activity on double-strand (ds) DNA, and endonuclease activity on single-strand (ss) DNA, properties characteristic of previously isolated endo-exonucleases. A variant of Trm2p, Trm2p(ctDelta76aa) lacking 76 amino acids at the C-terminus retained nuclease activities but not the methyl transferase activity. Both the native and the variant exhibited sensitivity to the endo-exonuclease inhibitor pentamidine. The Saccharomyces cerevisiae trm2(Delta232-1920nt) mutant (containing only the first 231 nucleotides of the TRM2 gene) displayed low sensitivity to methyl methane sulfonate (MMS) and suppressed the MMS sensitivity of rad52 mutants in trm2(Delta232-1920nt)rad52 double mutants. The deletion of KU80, in trm2(Delta232-1920nt) mutant background displayed higher MMS sensitivity supporting the view of the possible role of Trm2p in a competing repair pathway separate from NHEJ. In addition, trm2 exo1 double mutants were synergistically more sensitive to MMS and ionizing radiation than either of the single mutant suggesting that TRM2 and EXO1 can functionally complement each other. However, the C-terminal portion, required for its methyl transferase activity was found not important for DNA repair. These results propose an important role for TRM2 in DNA repair with a potential involvement of its nuclease function in homologous recombination based repair of DNA DSBs.  相似文献   

12.
13.
The presence of 5-methyluridine (m5U) at position 54 is a ubiquitous feature of most bacterial and eukaryotic elongator tRNAs. In this study, we have identified and characterized the TRM2 gene that encodes the tRNA(m5U54)methyltransferase, responsible for the formation of this modified nucleoside in Saccharomyces cerevisiae. Transfer RNA isolated from TRM2-disrupted yeast strains does not contain the m5U54 nucleoside. Moreover, a glutathione S-transferase (GST) tagged recombinant, Trm2p, expressed in Escherichia coli displayed tRNA(m5U54)methyltransferase activity using as substrate tRNA isolated from a trm2 mutant strain, but not tRNA isolated from a TRM2 wild-type strain. In contrast to what is found for the tRNA(m5U54)methyltransferase encoding gene trmA+ in E. coli, the TRM2 gene is not essential for cell viability and a deletion strain shows no obvious phenotype. Surprisingly, we found that the TRM2 gene was previously identified as the RNC1/NUD1 gene, believed to encode the yNucR endo-exonuclease. The expression and activity of the yNucR endo-exonuclease is dependent on the RAD52 gene, and does not respond to increased gene dosage of the RNC1/NUD1 gene. In contrast, we find that the expression of a trm2-LacZ fusion and the activity of the tRNA(m5U54)methyltransferase is not regulated by the RAD52 gene and does respond on increased gene dosage of the TRM2 (RNC1/NUD1) gene. Furthermore, there was no nuclease activity associated with a GST-Trm2 recombinant protein. The purified yNucR endo-exonuclease has been reported to have an NH2-D-E-K-N-L motif, which is not found in the Trm2p. Therefore, we suggest that the yNucR endo-exonuclease is encoded by a gene other than TRM2.  相似文献   

14.
15.
N(2)-Monomethylguanosine-10 (m(2)G10) and N(2),N(2)-dimethylguanosine-26 (m(2)(2)G26) are the only two guanosine modifications that have been detected in tRNA from nearly all archaea and eukaryotes but not in bacteria. In Saccharomyces cerevisiae, formation of m(2)(2)G26 is catalyzed by Trm1p, and we report here the identification of the enzymatic activity that catalyzes the formation of m(2)G10 in yeast tRNA. It is composed of at least two subunits that are associated in vivo: Trm11p (Yol124c), which is the catalytic subunit, and Trm112p (Ynr046w), a putative zinc-binding protein. While deletion of TRM11 has no detectable phenotype under laboratory conditions, deletion of TRM112 leads to a severe growth defect, suggesting that it has additional functions in the cell. Indeed, Trm112p is associated with at least four proteins: two tRNA methyltransferases (Trm9p and Trm11p), one putative protein methyltransferase (Mtc6p/Ydr140w), and one protein with a Rossmann fold dehydrogenase domain (Lys9p/Ynr050c). In addition, TRM11 interacts genetically with TRM1, thus suggesting that the absence of m(2)G10 and m(2)(2)G26 affects tRNA metabolism or functioning.  相似文献   

16.
Two archaeal tRNA methyltransferases belonging to the SPOUT superfamily and displaying unexpected activities are identified. These enzymes are orthologous to the yeast Trm10p methyltransferase, which catalyses the formation of 1-methylguanosine at position 9 of tRNA. In contrast, the Trm10p orthologue from the crenarchaeon Sulfolobus acidocaldarius forms 1-methyladenosine at the same position. Even more surprisingly, the Trm10p orthologue from the euryarchaeon Thermococcus kodakaraensis methylates the N1-atom of either adenosine or guanosine at position 9 in different tRNAs. This is to our knowledge the first example of a tRNA methyltransferase with a broadened nucleoside recognition capability. The evolution of tRNA methyltransferases methylating the N1 atom of a purine residue is discussed.  相似文献   

17.
18.
19.
A synthetic genetic array was used to identify lethal and slow-growth phenotypes produced when a mutation in TRM6, which encodes a tRNA modification enzyme subunit, was combined with the deletion of any non-essential gene in Saccharomyces cerevisiae. We found that deletion of the REX1 gene resulted in a slow-growth phenotype in the trm6-504 strain. Previously, REX1 was shown to be involved in processing the 3′ ends of 5S rRNA and the dimeric tRNAArg-tRNAAsp. In this study, we have discovered a requirement for Rex1p in processing the 3′ end of tRNAiMet precursors and show that precursor tRNAiMet accumulates in a trm6-504 rex1Δ strain. Loss of Rex1p results in polyadenylation of its substrates, including tRNAiMet, suggesting that defects in 3′ end processing can activate the nuclear surveillance pathway. Finally, purified Rex1p displays Mg2+-dependent ribonuclease activity in vitro, and the enzyme is inactivated by mutation of two highly conserved amino acids.  相似文献   

20.
A characteristic feature of tRNAs is the numerous modifications found throughout their sequences, which are highly conserved and often have important roles. Um(44) is highly conserved among eukaryotic cytoplasmic tRNAs with a long variable loop and unique to tRNA(Ser) in yeast. We show here that the yeast ORF YPL030w (now named TRM44) encodes tRNA(Ser) Um(44) 2'-O-methyltransferase. Trm44 was identified by screening a yeast genomic library of affinity purified proteins for activity and verified by showing that a trm44-delta strain lacks 2'-O-methyltransferase activity and has undetectable levels of Um(44) in its tRNA(Ser) and by showing that Trm44 purified from Escherichia coli 2'-O-methylates U(44) of tRNA(Ser) in vitro. Trm44 is conserved among metazoans and fungi, consistent with the conservation of Um(44) in eukaryotic tRNAs, but surprisingly, Trm44 is not found in plants. Although trm44-delta mutants have no detectable growth defect, TRM44 is required for survival at 33 degrees C in a tan1-delta mutant strain, which lacks ac(4)C12 in tRNA(Ser) and tRNA(Leu). At nonpermissive temperature, a trm44-delta tan1-delta mutant strain has reduced levels of tRNA(Ser(CGA)) and tRNA(Ser(UGA)), but not other tRNA(Ser) or tRNA(Leu) species. The trm44-delta tan1-delta growth defect is suppressed by addition of multiple copies of tRNA(Ser(CGA)) and tRNA(Ser(UGA)), directly implicating these tRNA(Ser) species in this phenotype. The reduction of specific tRNA(Ser) species in a trm44-delta tan1-delta mutant underscores the importance of tRNA modifications in sustaining tRNA levels and further emphasizes that tRNAs undergo quality control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号