首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We found that the recombinant endo-beta-N-acetylglucosaminidase of Mucor hiemalis (Endo-M) expressed in Candida boidinii had the transglycosylation activity of transferring a bisecting hybrid-type oligosaccharide from an ovalbumin glycopeptide to the acceptor (p-nitrophenyl 2-acetamido-2-deoxy-beta-D-glucopyranoside) in a good yield of 43%.  相似文献   

2.
We investigated the transglycosylation reaction of the recombinant endo-beta-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) expressed in Candida boidinii using such sugar derivatives as N-acylated d-glucosamines, C-glucosyl derivatives, and a 2-O-glycosylated disaccharide as acceptors. We found that a variety of sugar derivatives modified at C-1 or C-2 could be used as acceptors for transglycosylation by Endo-M to create novel oligosaccharides.  相似文献   

3.
Endo-M, endo-beta-N-acetylglucosaminidase from Mucor hiemalis, is known as a useful enzyme for the synthesis of neoglycopeptides due to its transglycosylation activity. We cloned the Endo-M gene encoding a putative 744 amino acids, which shows high identity to glycoside hydrolase family 85 endo-beta-N-acetylglucosaminidases. The gene encoding Endo-M was expressed in protease-deficient Candida boidinii with a molecular mass of 85 kDa as a monomeric form. Recombinant Endo-M could liberate both high-mannose type and biantennary complex type oligosaccharides from glycopeptides, which was same as the native enzyme. The Km and Kcat values for DNS-Man6GlcNAc2Asn were 0.51 mM and 8.25 s(-1), respectively. Recombinant Endo-M also exhibited transglycosylation activity toward high-mannose type and biantennary complex type oligosaccharides, which were transferred to alcohols, monosaccharides, oligosaccharides, and glycosides. To investigate about the catalytically essential amino acids of Endo-M, site-directed mutagenesis was performed, and it was found that mutants E177G and E177Q completely abolished the hydrolytic activity and W228R partially abolished the transglycosylation activity.  相似文献   

4.
To determine the structural specificity of the glycosyl acceptor of the transglycosylation reaction using endo-β-N-acetylglucosaminidase (ENGase) (EC 3.2.1.96) from Mucor hiemalis (Endo-M), several acceptor derivatives were designed and synthesized. The narrow regions of the 1,3-diol structure from the 4- to 6-hydroxy functions of GlcNAc were found to be essential for the transglycosylation reaction using Endo-M. Furthermore, it was determined that Endo-M strictly recognizes a 1,3-diol structure consisting of primary and secondary hydroxyl groups.  相似文献   

5.

Background

An efficient method for synthesizing homogenous glycoproteins is essential for elucidating the structural and functional roles of glycans of glycoproteins. We have focused on the transglycosylation activity of endo-β-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) as a tool for glycoconjugate syntheses, since it can transfer en bloc the oligosaccharide of not only high-mannose type but also complex-type N-glycan onto various acceptors having an N-acetylglucosamine residue. However, there are two major bottlenecks for its practical application: the low yield of the transglycosylation product and the difficulty to obtain the activated sugar oxazoline substrate, especially the sialo-complex type one.

Methods

We carried out the transglycosylation using a glycosynthase-like N175Q mutant of Endo-M, which was found to possess enhanced transglycosylation activity with sugar oxazoline as a donor substrate, in combination with an easy preparation of the sialo-complex-type sugar oxazoline from natural sialoglycopeptide in egg yolk.

Results

Endo-M-N175Q showed efficient transglycosylation toward sialo-complex-type sugar oxazoline onto bioactive peptides and bovine ribonuclease B, and each sialylated compound was obtained in significantly high yield.

Conclusions

Highly efficient and simple chemo-enzymatic syntheses of various sialylated compounds were enabled, by a combination of a simple synthesis of sialo-complex-type sugar oxazoline and the Endo-M-N175Q catalyzed transglycosylation.

General significance

Our method would be very useful for a practical synthesis of biologically important glycopeptides and glycoproteins.  相似文献   

6.
Artificial insulin with an N-linked oligosaccharide was synthesized by a chemo-enzymatic method using endo-β-N-acetylglucosaminidase from Mucor hiemalis (Endo-M). GlcNAc-modified insulin was prepared by the reaction of the carboxymethyl glycoside of GlcNAc and 3 amino groups of bovine insulin using a dimethylphosphinothioic mixed anhydride (Mpt-MA) method. A transglycosylation reaction of the GlcNAc-modified insulin using Endo-M gave mono-transglycosylated insulin predominantly. We determined the transglycosylation site of the mono-transglycosylated insulin.  相似文献   

7.
Endo-beta-N-acetylglucosaminidase from Mucor hiemalis (Endo-M), a family 85 glycoside hydrolase, acts on the beta1,4 linkage of N,N'-diacetylchitobiose moiety in the N-linked glycans of glycoproteins and catalyzes not only the hydrolysis reaction but also the transglycosylation reaction that transfers the releasing sugar chain to an acceptor other than water to form a new glycosidic linkage. The transglycosylation activity of Endo-M holds a great promise for the chemo-enzymatic synthesis and glyco-engineering of glycoproteins, but the inherent hydrolytic activity for product hydrolysis and low transglycosylation have hampered its broad applications. This paper describes the site-directed mutagenesis on residues in the putative catalytic region of Endo-M to generate mutants with superior transglycosylation activity. Two interesting mutants were discovered. The Y217F mutant was found to possess much enhanced transglycosylation activity and yet much diminished hydrolytic activity in comparison with the wild-type Endo-M. Kinetic analyses revealed that the Km value of Y217F for an acceptor substrate 4-methylumbelliferyl-beta-D-N-acetylglucosaminide was only one-tenth of that of the wild-type, implicating a much higher affinity of Y217F for the acceptor substrate than the wild-type. The other mutant, N175A, acts like a glycosynthase. It was found that mutation at Asn175"knocked out" the hydrolytic activity, but the mutant was able to take the highly active sugar oxazolines (the transition state mimics) as donor substrates for transglycosylation. This is the first glycosynthase derived from endo-beta-N-acetylglucosaminidases that proceed via a substrate-assisted mechanism. Our findings provide further insights on the substrate-assisted mechanism of GH85. The usefulness of the novel glycosynthase was exemplified by the efficient synthesis of a human immunodeficiency virus, type 1 (HIV-1) glycopeptide with potent anti-HIV activity.  相似文献   

8.
Endo-M, endo-β-N-acetylglucosaminidase from Mucor hiemalis, transferred the complex type oligosaccharide of sialoglycopeptide to partially deglycosylated proteins (N-acetylglucosamine-attached proteins), which were prepared by excluding high-mannose type oligosaccharides from glycoproteins with Endo-H, endo-β-N-acetylglucosaminidase from Streptomyces plicatus. This finding indicated that the high-mannose type oligosaccharides on glycoproteins can be changed to complex type ones by the transglycosylation activity of Endo-M. This is the first report of the establishment of a remodeling system for the different types of oligosaccharides on glycoproteins with microbial endo-β-N-acetylglucosaminidases having different substrate specificities. Endo-M is a powerful tool for the in vitro synthesis of glycoproteins containing complex type oligosaccharides from glycoproteins produced by yeast.  相似文献   

9.
A disaccharide substrate of Manbeta1-4GlcNAc-oxazoline 2 was designed and synthesized as a novel probe for detection of the transglycosylating activity of endoglycosidases. A regio- and stereoselective transglycosylation reaction of 2 to GlcNAcbeta1-O-pNP or Dns-Asn(GlcNAc)-OH catalyzed by endo-beta-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) and endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) has been demonstrated for the first time, resulting in the core trisaccharide derivative Manbeta1-4GlcNAcbeta1-4GlcNAcbeta1-O-pNP 8 (or -(Dns)Asn-OH). Interestingly, the transglycosylation proceeds irreversibly; the resulting trisaccharide 8 was not hydrolyzed by Endo-M and Endo-A. Based on these results, a new mechanism including an oxazolinium ion intermediate has been proposed for the endoglycosidase-catalyzed hydrolysis or transglycosylation.  相似文献   

10.
Sialoglycopeptide (SGP) is referred as the glycopeptide in hen's egg yolk, which has an N-linked, complex-type, disialyl biantennary oligosaccharide with an alpha-(2-->6)-sialyl N-acetyllactosamine residue. The residue is known as a binding ligand of type-A human influenza virus hemagglutinin. We describe herein a simple synthesis of a sialoglycopolymer with a chitosan backbone as a potent inhibitor of human influenza virus hemagglutination that makes use of the natural source ingredient, SGP, and the transglycosylation activity of endo-beta-N-acetylglucosaminidase from Mucor hiemalis (Endo-M). Its inhibitiory activity for influenza virus hemagglutination is 40 times higher than that of SGP, and its competitive inhibition is determined to be over 300 times higher than that of fetuin. These results indicate that a sialoglycopolymer having a multivalent sialo-oligosaccharide could potentially be used for the prevention of influenza virus infection.  相似文献   

11.
We report the identification, molecular cloning, and characterization of an endo-beta-N-acetylglucosaminidase from the nematode Caenorhabditis elegans. A search of the C. elegans genome database revealed the existence of a gene exhibiting 34% identity to Mucor hiemalis (a fungus) endo-beta-N-acetylglucosaminidase (Endo-M). Actually, the C. elegans extract contained endo-beta-N-acetylglucosaminidase activity. The putative cDNA for the C. elegans endo-beta-N-acetylglucosaminidase (Endo-CE) was amplified by polymerase chain reaction from the Uni-ZAP XR library, cloned, and sequenced. The recombinant Endo-CE expressed in Escherichia coli exhibited substrate specificity mainly for high-mannose type oligosaccharides. Man(8)GlcNAc(2) was the best substrate for Endo-CE, and Man(3)GlcNAc(2) was also hydrolyzed. Biantennary complex type oligosaccharides were poor substrates, and triantennary complex substrates were not hydrolyzed. Its substrate specificity was similar to those of Endo-M and endo-beta-N-acetylglucosaminidase from hen oviduct. Endo-CE was confirmed to exhibit transglycosylation activity, as seen for some microbial endo-beta-N-acetylglucosaminidases. This is the first report of the molecular cloning of an endo-beta-N-acetylglucosaminidase gene from a multicellular organism, which shows the possibility of using this well-characterized nematode as a model system for elucidating the role of this enzyme.  相似文献   

12.
A microbioreactor immobilized with a synthase-type mutant enzyme, Endo-M-N175Q (glycosynthase) of endo-β-N-acetylglucosaminidase derived from Mucor hiemalis (Endo-M), was constructed and used for glycoconjugate synthesis. The transglycosylation was performed with a reaction mixture containing an oxazoline derivative of sialo complex-type glycoside (SG), which was prepared from a sialo complex-type glycopeptide SGP derived from hen egg yolk, as a glycosyl donor and N-Fmoc-N-acetylglucosaminyl-l-asparagine [Fmoc-Asn(GlcNAc)-OH] as an acceptor. The reaction mixture was injected into a glycosynthase microbioreactor at a constant flow rate. Highly efficient and nearly stoichiometric transglycosylation occurred in the microbioreactor, and the transglycosylation product was eluted from the other end of the reactor. The glycosynthase microbioreactor was stable and could be used repeatedly for a long time.  相似文献   

13.
Endo-M, an endo-β-N-acetylglucosaminidase from Mucor hiemalis, is a family 85 glycoside hydrolase. This enzyme is unique in that it can transfer en bloc the oligosaccharide of various types of N-glycans onto different acceptors, and thereby it enzymatically generates diverse glycoconjugates. In this study, we performed mutational and kinetic studies focusing on a key catalytic asparagine 175 of Endo-M. We have shown that most of the Asn-175 mutants had significantly diminished hydrolysis activity but acted as glycosynthases capable of using synthetic sugar oxazoline for transglycosylation. Our results confirm the critical role of this asparagine residue in promoting the formation of an oxazolinium ion intermediate in the first step of the substrate-assisted catalysis. Interestingly, the N175Q mutant was found to possess dramatically enhanced glycosynthase-like activity with sugar oxazoline in comparison with N175A and a transglycosidase-like activity with “natural” N-glycan as well. These results also implicated the significance of amide side chain in the asparagine 175 of Endo-M for promoting oxazoline transglycosylation in the second step of the catalysis. The highly efficient syntheses of glycopeptides/glycoproteins by N175Q combined with synthetic sugar oxazolines or natural N-glycan substrates were exemplified. In addition, we also identified several previously unknown residues that seem to play a role in the catalysis of Endo-M.  相似文献   

14.
We attempted to obtain the monoclonal antibody specific for the N-linked complex-type sialo-oligosaccharide in glycoproteins. We first synthesized a chimeric immunoantigen having an N-linked complex-type of oligosaccharide of glycopeptide, which was bound to a p-formylphenyl compound and conjugated with phosphatidylethanolamine dimylistoyl using the transglycosylation activity of a microbial endoglycosidase (Endo-M) and a reductive amination reaction. This preparative method was convenient and provided a good yield. By immunizing mice with this chimeric neoglycolipid, the monoclonal antibody for the complex-type of sialo-oligosaccharide was obtained in the culture fluid of the cell line even though it was relatively unstable. The monoclonal antibody reacted with various glycoproteins having complex-type sialo-oligosaccharides, but not with those having complex-type asialo-oligosaccharides and high mannose types of oligosaccharides, or with any glycosphingolipids. One of epitopes of this monoclonal antibody seemed to be an α-2,6-linked sialic acid at the non-reducing end of the sialo-oligosaccharide of the glycoprotein.  相似文献   

15.
1-O-Acetyl-beta-D-galactopyranose (AcGal), a new substrate for beta-galactosidase, was synthesized in a stereoselective manner by the trichloroacetimidate procedure. Kinetic parameters (K(M) and k(cat)) for the hydrolysis of 1-O-acetyl-beta-D-galactopyranose catalyzed by the beta-D-galactosidase from Penicillium sp. were compared with similar characteristics for a number of natural and synthetic substrates. The value for k(cat) in the hydrolysis of AcGal was three orders of magnitude greater than for other known substrates. The beta-galactosidase hydrolyzes AcGal with retention of anomeric configuration. The transglycosylation activity of the beta-D-galactosidase in the reaction of AcGal and methyl beta-D-galactopyranoside (1) as substrates was investigated by 1H NMR spectroscopy and HPLC techniques. The transglycosylation product using AcGal as a substrate was beta-D-galactopyranosyl-(1-->6)-1-O-acetyl-beta-D-galactopyranose (with a yield of approximately 70%). In the case of 1 as a substrate, the main transglycosylation product was methyl beta-D-galactopyranosyl-(1-->6)-beta-D-galactopyranoside. Methyl beta-D-galactopyranosyl-(1-->3)-beta-D-galactopyranoside was found to be minor product in the latter reaction.  相似文献   

16.
For chemo-enzymatic synthesis of a glycosylated peptide, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) was used for the synthesis of a N-acetylglucosaminyl peptide and a pseudoglycopeptide by solid-phase peptide synthesis without the requirement of protecting groups on the carbohydrate. We also performed transglycosylation of an N-glycan to the N-acetylglucosaminyl peptide using endo-β-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) to synthesize a glycopeptide containing a complex N-glycan.  相似文献   

17.
Endo-β-N-acetylglucosaminidase from Streptococcus pneumoniae (Endo-D) is an endoglycosidase capable of hydrolyzing the Fc N-glycan of intact IgG antibodies after sequential removal of the sialic acid, galactose, and internal GlcNAc residues in the N-glycan. Endo-D also possesses transglycosylation activity with sugar oxazoline as the donor substrate, but the transglycosylation yield is low due to enzymatic hydrolysis of the donor substrate and the product. We report here our study on the hydrolytic and transglycosylation activity of recombinant Endo-D and its selected mutants. We found that Endo-D preferred core-fucosylated N-glycan for hydrolysis but favored nonfucosylated GlcNAc acceptor for transglycosylation. Several mutants showed significantly enhanced transglycosylation efficiency over the wild type enzyme. Two mutants (N322Q and N322A) were identified as typical glycosynthases that demonstrated remarkable transglycosylation activity with only marginal or no product hydrolysis activity. Kinetic studies revealed that the N322Q [corrected]and N322A glycosynthases had much higher catalytic efficiency for glycosylating the nonfucosylated GlcNAc acceptor. In comparison, the N322Q was much more efficient than N322A for transglycosylation. However, N322Q and N322A [corrected] could not take more complex N-glycan oxazoline as substrate for transglycosylation, indicating their strict substrate specificity. The usefulness of the N322Q glycosynthase was exemplified by its application for efficient glycosylation remodeling of IgG-Fc domain.  相似文献   

18.
We prepared yeast Saccharomyces cerevisiae alpha-mating factor, a 13-amino acid pheromone produced by haploid alpha-cells, bound with glucose or N-acetylglucosamine at the fifth glutamine residue from the N-terminal by the chemical method of peptide synthesis. It was found that the bioactivity of glucosyl alpha-mating factor was higher than that of native alpha-mating factor. However, it was slightly lower than that of N-acetylglucosaminyl alpha-mating factor. This suggested that the N-acetylamino residue might play some important role in the enhancement of the bioactivity of alpha-mating factor. However, CD spectra analysis of alpha-mating factor and its derivatives demonstrated that their structures were almost identical. On the other hand, we attached a sialo complex type oligosaccharide to N-acetylglucosamine or its glucose residue by means of the transglycosylation activity of endo-beta-N-acetylglucosaminidase from Mucor hiemalis (Endo-M). The attachment of the oligosaccharide to both alpha-mating factors reduced their activities. However, enzymatical trimming of the sialo complex type oligosaccharide recovered its activity.  相似文献   

19.
Class V chitinase from cycad, Cycas revoluta, (CrChi-A) is the first plant chitinase that has been found to possess transglycosylation activity. To identify the structural determinants that bring about transglycosylation activity, we mutated two aromatic residues, Phe166 and Trp197, which are likely located in the acceptor binding site, and the mutated enzymes (F166A, W197A) were characterized. When the time-courses of the enzymatic reaction toward chitin oligosaccharides were monitored by HPLC, the specific activity was decreased to about 5–10% of that of the wild type and the amounts of transglycosylation products were significantly reduced by the individual mutations. From comparison between the reaction time-courses obtained by HPLC and real-time ESI-MS, we found that the transglycosylation reaction takes place under the conditions used for HPLC but not under the ESI-MS conditions. The higher substrate concentration (5 mM) used for the HPLC determination is likely to bring about chitinase-catalyzed transglycosylation. Kinetic analysis of the time-courses obtained by HPLC indicated that the sugar residue affinity of + 1 subsite was strongly reduced in both mutated enzymes, as compared with that of the wild type. The IC50 value for the inhibitor allosamidin determined by real-time ESI-MS was not significantly affected by the individual mutations, indicating that the state of the allosamidin binding site (from − 3 to − 1 subsites) was not changed in the mutated enzymes. We concluded that the aromatic side chains of Phe166 and Trp197 in CrChi-A participate in the transglycosylation acceptor binding, thus controlling the transglycosylation activity of the enzyme.  相似文献   

20.
Chitinases are known to hydrolyze chitin polymers into smaller chitooligosaccharides. Chitinase from bacterium Serratia proteamaculans (SpChiD) is found to exhibit both hydrolysis and transglycosylation activities. SpChiD belongs to family 18 of glycosyl hydrolases (GH-18). The recombinant SpChiD was crystallized and its three-dimensional structure was determined at 1.49 Å resolution. The structure was refined to an R-factor of 16.2%. SpChiD consists of 406 amino acid residues. The polypeptide chain of SpChiD adopts a (β/α)8 triosephosphate isomerase (TIM) barrel structure. SpChiD contains three acidic residues, Asp149, Asp151 and Glu153 as part of its catalytic scheme. While both Asp149 and Glu153 adopt single conformations, Asp151 is observed in two conformations. The substrate binding cleft is partially obstructed by a protruding loop, Asn30 - Asp42 causing a considerable reduction in the number of available subsites in the substrate binding site. The positioning of loop, Asn30 - Asp42 appears to be responsible for the transglycosylation activity. The structure determination indicated the presence of sulfone Met89 (SMet89). The sulfone methionine residue is located on the surface of the protein at a site where extra domain is attached in other chitinases. This is the first structure of a single domain chitinase with hydrolytic and transglycosylation activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号