首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substrate specificities for recognition at the PR/p3 site of HTLV-1 protease were clarified using small libraries of substrate peptides. Specificities at P1 and P1′ positions were examined by parallel synthesis/digestion of synthetic peptides covering the PR/p3 site (KGPPVILPIQA). Specificities at P2 to P4 positions were examined by split and mix syntheses of olefin-peptide libraries containing the substrate sequence (PPVILPIQ). The solid-phase Horner-Emmons reaction was successfully applied to syntheses of multi-component substrates for library preparation. From the digestion of substrate peptides by a chemically synthesized mutant of HTLV-1 protease (C2A HTLV-1 PR), it was found for the first time that the preference for Pro at the P1′ position and for Ile at the P2 position is unique for this enzyme. We dedicate this article to Prof. Bruce Merrifield for his great role and impact on solid-phase chemistry.  相似文献   

2.
D B Olsen  G Kotzorek  F Eckstein 《Biochemistry》1990,29(41):9546-9551
The inhibitory effect of phosphorothioate residues, located within one strand of double-stranded DNA, on the hydrolytic activity of the restriction endonuclease EcoRV was investigated. Specific incorporation of a phosphorothioate group at the site of cleavage yielded the sequence 5'-GATsATC-3'. This modified sequence was cleaved at a relative rate of 0.1 compared to the unmodified substrate. Substrates 5'-GATsAsTC-3' and 5'-GsATsATC-3', both containing one additional phosphorothioate substitution, were linearized at a rate of 0.04 relative to unmodified DNA. However, under the same conditions, fully dAMPS-substituted DNA was found to be virtually resistant to the hydrolytic activity of EcoRV. Further experiments showed that double-stranded DNA fragments generated by PCR containing phosphorothioate groups within both strands are potent inhibitors of EcoRV catalysis. The inhibition was independent of whether the inhibitor fragment contained an EcoRV recognition site. We concluded that substitution of the phosphate group at the site of cleavage by a phosphorothioate residue decreases the rate of EcoRV-catalyzed hydrolysis most significantly. Substitution of other phosphate groups within the recognition sequence plays a limited role in enzyme inhibition. The presence of multiple dNMPS residues at regions of the DNA removed from the EcoRV recognition site may decrease the amount of enzyme available for catalysis by nonspecific binding to EcoRV.  相似文献   

3.
Inhibition of CDK2/CA (cyclin-dependent kinase 2/cyclin A complex) activity through blocking of the substrate recognition site in the cyclin A subunit has been demonstrated to be an effective method for inducing apoptosis in tumor cells. We have used the cyclin binding motif (CBM) present in the tumor suppressor proteins p21(WAF1) and p27(KIP1) as a template to optimize the minimal sequence necessary for CDK2/CA inhibition. A series of peptides were prepared, containing nonnatural amino acids, which possess nano- to micromolar CDK2-inhibitory activity. Here we present X-ray structures of the protein complex CDK2/CA, together with the cyclin groove-bound peptides H-Ala-Ala-Abu-Arg-Ser-Leu-Ile-(p-F-Phe)-NH(2) (peptide 1), H-Arg-Arg-Leu-Ile-Phe-NH(2) (peptide 2), Ac-Arg-Arg-Leu-Asn-(m-Cl-Phe)-NH(2) (peptide 3), H-Arg-Arg-Leu-Asn-(p-F-Phe)-NH(2) (peptide 4), and H-Cit-Cit-Leu-Ile-(p-F-Phe)-NH(2) (peptide 5). Some of the peptide complexes presented here were obtained through the novel technique of ligand exchange within protein crystals. This method may find general application for obtaining complex structures of proteins with surface-bound ligands.  相似文献   

4.
HIV-1 protease (PR) and two drug-resistant variants--PR with the V82A mutation (PR(V82A)) and PR with the I84V mutation (PR(I84V))--were studied using reduced peptide analogs of five natural cleavage sites (CA-p2, p2-NC, p6pol-PR, p1-p6 and NC-p1) to understand the structural and kinetic changes. The common drug-resistant mutations V82A and I84V alter residues forming the substrate-binding site. Eight crystal structures were refined at resolutions of 1.10-1.60 A. Differences in the PR-analog interactions depended on the peptide sequence and were consistent with the relative inhibition. Analog p6(pol)-PR formed more hydrogen bonds of P2 Asn with PR and fewer van der Waals contacts at P1' Pro compared with those formed by CA-p2 or p2-NC in PR complexes. The P3 Gly in p1-p6 provided fewer van der Waals contacts and hydrogen bonds at P2-P3 and more water-mediated interactions. PR(I84V) showed reduced van der Waals interactions with inhibitor compared with PR, which was consistent with kinetic data. The structures suggest that the binding affinity for mutants is modulated by the conformational flexibility of the substrate analogs. The complexes of PR(V82A) showed smaller shifts of the main chain atoms of Ala82 relative to PR, but more movement of the peptide analog, compared to complexes with clinical inhibitors. PR(V82A) was able to compensate for the loss of interaction with inhibitor caused by mutation, in agreement with kinetic data, but substrate analogs have more flexibility than the drugs to accommodate the structural changes caused by mutation. Hence, these structures help to explain how HIV can develop drug resistance while retaining the ability of PR to hydrolyze natural substrates.  相似文献   

5.
6.
Y Xiang  T W Ridky  N K Krishna    J Leis 《Journal of virology》1997,71(3):2083-2091
Proteolytic processing of the Rous sarcoma virus (RSV) Gag precursor was altered in vivo through the introduction of amino acid substitutions into either the polyprotein cleavage junctions or the PR coding sequence. Single amino acid substitutions (V(P2)S and P(P4)G), which are predicted from in vitro peptide substrate cleavage data to decrease the rate of release of PR from the Gag polyprotein, were placed in the NC portion of the NC-PR junction. These substitutions do not affect the efficiency of release of virus-like particles from COS cells even though recovered particles contain significant amounts of uncleaved Pr76gag in addition to mature viral proteins. Single amino acid substitutions (A(P3)F and S(P1)Y), which increase the rate of PR release from Gag, also do not affect budding of virus-like particles from cells. Substitution of the inefficiently cleaved MA-p2 junction sequence in Gag by eight amino acids from the rapidly cleaved NC-PR sequence resulted in a significant increase in cleavage at the new MA-p2 junction, but again without an effect on budding. However, decreased budding was observed when the A(P3)F or S(P1)Y substitution was included in the NC-PR junction sequence between the MA and p2 proteins. A budding defect was also caused by substitution into Gag of a PR subunit containing three amino acid substitutions (R105P, G106V, and S107N) in the substrate binding pocket that increase the catalytic activity of PR. The defect appears to be the result of premature proteolytic processing that could be rescued by inactivating PR through substitution of a serine for the catalytic aspartic acid residue. This budding defect was also rescued by single amino acid substitutions in the NC-PR cleavage site which decrease the rate of release of PR from Gag. A similar budding defect was caused by replacing the Gag PR with two PR subunits covalently linked by four glycine residues. In contrast to the defect caused by the triply substituted PR, the budding defect observed with the linked PR dimer could not be rescued by NC-PR cleavage site mutations, suggesting that PR dimerization is a limiting step in the maturation process. Overall, these results are consistent with a model in which viral protein maturation occurs after PR subunits are released from the Gag polyprotein.  相似文献   

7.
8.
The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.  相似文献   

9.
BamHI restriction patterns of the self-complementary oligodeoxyribonucleotides were investigated. Cleavage of the oligonucleotides, containing full-length recognition site GGATCC. shows a usual type of restriction pattern. The oligonucleotide d(5'-TCCAGATCTGGA) contains part of the recognition sequences 5'-GATC flanked with the half-size recognition sequences 5'-TCC from its 5'-side and 5'-GGA from its 3'-side. Cleavage of this substrate shows a restriction pattern which could be explained as being cleaved within the recognition sequence d(5'-GGA...TCC) formed by the ends of two substrate molecules. At the same time cleavage within the sequence d(5'-GATC) does not take place. These results support a symmetric binding model of a restriction nuclease with its recognition site via interaction with one half of the recognition sequence.  相似文献   

10.
11.
Nagel R  Ares M 《RNA (New York, N.Y.)》2000,6(8):1142-1156
Rnt1p is an RNase III homolog from budding yeast, required for processing snRNAs, snoRNAs, and rRNA. Numerous Rnt1p RNA substrates share potential to form a duplex structure with a terminal four-base loop with the sequence AGNN. Using a synthetic RNA modeled after the 25S rRNA 3' ETS cleavage site we find that the AGNN loop is an important determinant of substrate selectivity. When this loop sequence is altered, the rate of Rnt1p cleavage is reduced. The reduction in cleavage rate can be attributed to reduced binding of the mutant substrate as measured by a gel-shift assay. Deletion of the nonconserved N-terminal domain of Rnt1p does not affect cleavage site choice or the ability of the enzyme to distinguish substrates that contain the AGNN loop, indicating that this region is not required for selective cleavage. Strikingly, a recombinant fragment of Rnt1p containing little more than the dsRBD is able to discriminate between wild-type and mutant loop sequences in a binding assay. We propose that a major determinant of AGNN loop recognition by Rnt1p is present in its dsRBD.  相似文献   

12.
The enzyme gamma-glutamyl transpeptidase (GGT), implicated in many physiological processes, catalyses the transfer of a gamma-glutamyl from a donor substrate to an acyl acceptor substrate, usually an amino acid or a peptide. In order to investigate which moieties of the donor substrate are necessary for recognition by GGT, the structure of the well-recognized substrate L-gamma-glutamyl-p-nitroanilide was modified. Several activated esters and their amide derivatives were synthesized and used as substrates. Kinetic (K(m) and V(max)) and inhibition constants (K(i)) were measured and reveal that almost the entire gamma-glutamyl moiety is necessary for recognition in the binding site of the donor substrate. The implied presence of certain complementary amino acids in this substrate binding site will allow the more rational design of various substrate analogues and inhibitors.  相似文献   

13.
Rce1p catalyzes the proteolytic trimming of C-terminal tripeptides from isoprenylated proteins containing CAAX-box sequences. Because Rce1p processing is a necessary component in the Ras pathway of oncogenic signal transduction, Rce1p holds promise as a potential target for therapeutic intervention. However, its mechanism of proteolysis and active site have yet to be defined. Here, we describe synthetic peptide analogues that mimic the natural lipidated Rce1p substrate and incorporate photolabile groups for photoaffinity-labeling applications. These photoactive peptides are designed to crosslink to residues in or near the Rce1p active site. By incorporating the photoactive group via p-benzoyl-l-phenylalanine (Bpa) residues directly into the peptide substrate sequence, the labeling efficiency was substantially increased relative to a previously-synthesized compound. Incorporation of biotin on the N-terminus of the peptides permitted photolabeled Rce1p to be isolated via streptavidin affinity capture. Our findings further suggest that residues outside the CAAX-box sequence are in contact with Rce1p, which has implications for future inhibitor design.  相似文献   

14.
Wip1, the wild-type p53-induced phosphatase, selectively dephosphorylates a threonine residue on p38 MAPK and mediates a negative feedback loop of the p38 MAPK-p53 signaling pathway. To identify the substrate specificity of Wip1, we prepared a recombinant human Wip1 catalytic domain (rWip1) and measured kinetic parameters for phosphopeptides containing the dephosphorylation sites in p38alpha and in a new substrate, UNG2. rWip1 showed properties that were comparable to those of PP2Calpha or full-length Wip1 in terms of affinity for Mg(2+), insensitivity to okadaic acid, and threonine dephosphorylation. The substrate specificity constant k(cat)/K(m) for a diphosphorylated peptide with a pTXpY sequence was 6-8-fold higher than that of a monophosphorylated peptide with a pTXY sequence, while PP2Calpha showed a preference for monophosphorylated peptides. Although individual side chains before and after the pTXpY sequence of the substrate did not have a significant effect on rWip1 activity, a chain length of at least five residues, including the pTXpY sequence, was important for substrate recognition by rWip1. Moreover, the X residue in the pTXpY sequence affected affinity for rWip1 and correlated with selectivity for MAPKs. These findings suggest that substrate recognition by Wip1 is centered toward a very narrow region around the pTXpY sequence. Three-dimension homology models of Wip1 with bound substrate peptides were constructed, and site-directed mutagenesis was performed to confirm the importance of specific residues for substrate recognition. The results of our study should be useful for predicting new physiological substrates and for designing specific Wip1 inhibitors.  相似文献   

15.
Casein kinase II is a ubiquitous serine/threonine protein kinase which utilizes acidic amino acid residues as recognition determinants in its substrates, the motif -S/T-X-X-D/E- being particularly important. To test whether a phosphoserine residue can act as a substrate determinant, a peptide was synthesized, containing the sequence -S-X-X-S, which was not phosphorylated by casein kinase II. However, upon phosphorylation at the +3 position, the peptide became a substrate for casein kinase II. With another peptide, a positive influence of more distal phosphorylations was found. The results indicate the potential for casein kinase II to participate in hierarchal phosphorylation schemes.  相似文献   

16.
The catalytic ability of Ricin Toxin A-Chain (RTA) to create an abasic site in a 14-mer stem-tetraloop RNA is exploited for its detection. RTA catalyzes the hydrolysis of the N-glycosidic bond of a specific adenosine in the GAGA tetraloop of stem-loop RNA. Thus, a 14-mer stem-loop RNA substrate containing an intact “GAGA” sequence can be discriminated from the product containing an abasic “GabGA” sequence by hybridization with a 14-mer DNA stem-loop probe sequence and following the fluorescent response of the heteroduplexes. Three DNA beacon probe designs are described. Beacon 1 probe is a stem-loop structure and has a fluorophore and a quencher covalently linked to the 5′- and 3′-ends. In this format the probe–substrate heteroduplex gives a fluorescent signal while the probe–product one remains quenched. Beacon 2 is a modified version of 1 and incorporates a pyrene deoxynucleoside for recognition of the abasic site. In this format both the substrate and product heteroduplexes give a fluorescent response. Beacon 3 utilizes a design where the fluorophore is on the substrate RNA sequence at its 5′-end while the quencher is on the probe DNA sequence at its 3′-end. In this format the fluorescence of the substrate–probe heteroduplex is quenched while that of the product–probe one is enhanced. The lower limit of detection with beacons is 14 ng/mL of RTA.  相似文献   

17.
Protein-tyrosine phosphatase receptor type Z (Ptprz) has multiple substrate proteins, including G protein-coupled receptor kinase-interactor 1 (Git1), membrane-associated guanylate kinase, WW and PDZ domain-containing 1 (Magi1), and GTPase-activating protein for Rho GTPase (p190RhoGAP). We have identified a dephosphorylation site at Tyr-1105 of p190RhoGAP; however, the structural determinants employed for substrate recognition of Ptprz have not been fully defined. In the present study, we revealed that Ptprz selectively dephosphorylates Git1 at Tyr-554, and Magi1 at Tyr-373 and Tyr-858 by in vitro and cell-based assays. Of note, the dephosphorylation of the Magi1 Tyr-858 site required PDZ domain-mediated interaction between Magi1 and Ptprz in the cellular context. Alignment of the primary sequences surrounding the target phosphotyrosine residue in these three substrates showed considerable similarity, suggesting a consensus motif for recognition by Ptprz. We then estimated the contribution of surrounding individual amino acid side chains to the catalytic efficiency by using fluorescent peptides based on the Git1 Tyr-554 sequence in vitro. The typical substrate motif for the catalytic domain of Ptprz was deduced to be Glu/Asp-Glu/Asp-Glu/Asp-Xaa-Ile/Val-Tyr(P)-Xaa (Xaa is not an acidic residue). Intriguingly, a G854D substitution of the Magi1 Tyr-858 site matching better to the motif sequence turned this site to be susceptible to dephosphorylation by Ptprz independent of the PDZ domain-mediated interaction in cells. Furthermore, we found by database screening that the substrate motif is present in several proteins, including paxillin at Tyr-118, its major phosphorylation site. Expectedly, we verified that Ptprz efficiently dephosphorylates paxillin at this site in cells. Our study thus provides key insights into the molecular basis for the substrate recognition of Ptprz.  相似文献   

18.
Ability of the EcoRII restriction endonuclease to cleave 14-base-pair DNA duplexes with nucleotide substitutions in the recognition site CCA/TGG and in the adjacent base pair has been studied. Modifications leading to a local change in the substrate conformation (rU residue in and outside the recognition site, A.A- or A.C-pairs in the flanking sequence) reduce the rate of hydrolysis, the effect being maximal when the modified base pair is outside the recognition site. No digestion occurs when the internal dC-residue of the recognition site is 5-methylated in one or both strands. Replacement of dT residue in the EcoRII recognition site by dfl5U residue results in a dramatic inhibition of hydrolysis. Km and kcat for the cleavage of 14-base-pair DNA duplex have been determined. The cleavage rate of the dT-containing strand of the recognition site in 1.5 fold higher comparing with the dA-containing strand. The cleavage of both strands of the substrate by EcoRII endonuclease is confirmed to proceed in one enzyme-substrate complex.  相似文献   

19.
The specific action of serine proteinases on protein substrates is a hallmark of blood coagulation and numerous other physiological processes. Enzymic recognition of substrate sequences preceding the scissile bond is considered to contribute dominantly to specificity and function. We have investigated the contribution of active site docking by unique substrate residues preceding the scissile bond to the function of prothrombinase. Mutagenesis of the authentic P(1)-P(3) sequence in prethrombin 2/fragment 1.2 yielded substrate variants that could be converted to thrombin by prothrombinase. Proteolytic activation was also observed with a substrate variant containing the P(1)-P(3) sequence found in a coagulation zymogen not known to be activated by prothrombinase. Lower rates of activation of the variants derived from a decrease in maximum catalytic rate but not in substrate affinity. Replacement of the P(1) residue with Gln yielded an uncleavable derivative that retained the affinity of the wild type substrate for prothrombinase but did not engage the active site of the enzyme. Thus, active site docking of the substrate contributes to catalytic efficiency, but it is does not determine substrate affinity nor does it fully explain the specificity of prothrombinase. Therefore, extended interactions between prothrombinase and substrate regions removed from the cleavage site drive substrate affinity and enforce the substrate specificity of this enzyme complex.  相似文献   

20.
The human DNA methyltransferase 3A (DNMT3A) is essential for establishing DNA methylation patterns. Knowing the key factors involved in the regulation of mammalian DNA methylation is critical to furthering understanding of embryonic development and designing therapeutic approaches targeting epigenetic mechanisms. We observe substrate inhibition for the full length DNMT3A but not for its isolated catalytic domain, demonstrating that DNMT3A has a second binding site for DNA. Deletion of recognized domains of DNMT3A reveals that the conserved PWWP domain is necessary for substrate inhibition and forms at least part of the allosteric DNA binding site. The PWWP domain is demonstrated here to bind DNA in a cooperative manner with μM affinity. No clear sequence preference was observed, similar to previous observations with the isolated PWWP domain of Dnmt3b but with one order of magnitude weaker affinity. Potential roles for a low affinity, low specificity second DNA binding site are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号