首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several clones resistant to wheat-germ-agglutinin toxicity were isolated from B16 mouse-melanoma cells. The resistance may be explained in part by fewer binding sites for the agglutinin on the variant lines; the total, cellular sialic acid content appeared somewhat reduced. Analysis of cell glycoproteins indicated a decreased content of sialic acid in one glycoconjugate that binds to wheat-germ agglutinin and has O-linked oligosaccharides.  相似文献   

2.
Female rats were administered oral contraceptives and the levels of sialic acid on platelet membrane and granule glycoproteins were compared to controls using a sialic acid assay and a fluorescein-conjugated wheat germ agglutinin binding assay and also by measuring the binding of 125I-labelled wheat germ agglutinin to glycoprotein bands from platelets separated by polyacrylamide electrophoresis. The contraceptive-treated rats showed increased levels of glycoprotein sialylation which may partly explain the altered physiological function of the platelets.  相似文献   

3.
A new methodology was developed to study the cell-surface glycoproteins of cultured human skin fibroblasts. This was based on the binding of a variety of biotinyl-lectins to nitrocellulose electrophoretic transfers of total fibroblast lysates after separation in sodium dodecyl sulphate/polyacrylamide gels, followed by reaction with avidin-biotinyl-peroxidase complexes and detection with 3,3'-diaminobenzidine. The technique proved to be very sensitive and a large number of glycoproteins were detected by binding of concanavalin A and wheat-germ agglutinin. Binding of peanut agglutinin and to a lesser extent of Ricinus communis agglutinin I were found to be dependent on prior removal of sialic acid residues from the glycoproteins. Since by treatment of intact viable cells with neuraminidase only external sialic acid residues were removed, peanut agglutinin and Ricinus communis agglutinin I could thus be utilized for selective detection of cell-surface glycoproteins. Also, because peanut agglutinin was known to bind preferentially to oligosaccharides of the O-glycosidic type, and Ricinus communis agglutinin I to those of the N-glycosidic type, the two lectins were complementary in displaying the surface glycoproteins and in providing information about their oligosaccharide composition.  相似文献   

4.
The present light microscopic lectin, histochemical study suggests for the first time that the vertebrate gonadotropin-like substance in the basal part of the epithelial cells of Hatschek's pit is a sialic acid-containing glycoprotein. The binding intensity of the epithelial cells in Hatschek's pit to 6 lectins (Limulus polyphemus agglutinin (LPA), Wheat germ agglutinin (WGA),Helix pomatia agglutinin (HPA), Concanavalin A (Con A),Ulex europaeus agglutinin I (UEA I) andRicinus communis agglutinin I (RCA I)) indicate that the carbohydrate composition of the gonadotrophic glycoprotein is similar to that of mammals and fish, and that N-acetyl-D-galactosamine, sialic acid, glucosamine, D-mannose and L-fucose are components of the carbohydrate portion.  相似文献   

5.
We demonstrated the presence of intracellular lectin binding sites in promastigotes of Leishmania mexicana amazonensis. Direct and indirect lectin-gold techniques were used on Lowicryl K4M-embedded cells. The nuclear compartment was labeled by most lectins. Nucleoli were mainly labeled by WFH (Wistaria floribunda hemagglutinin) and LFA (Limax flavus agglutinin) specific for D-galactose/N-acetyl-D-galactosamine (D-Gal/D-GalNAc) and sialic acid, respectively. Sections treated with the fetuin-gold complex without previous lectin incubation also exhibited labeled nucleoli, although less intensely, suggesting the presence not only of sialic acid but also of a sialic acid-specific endogenous carbohydrate binding molecule in Leishmania nuclei. Surprisingly, the Golgi complex was never labeled, whereas the endoplasmic reticulum was frequently labeled, especially by RCA (Ricinus communis agglutinin; D-GalNAc/D-Gal) and WGA (wheat germ agglutinin; D-GlcNAc). The kinetoplast, a DNA-containing structure located within the mitochondrion, was generally labeled towards its extremities, where previous studies have shown the presence of ribonucleoproteins. Some possible biological roles for these intracellular glycoconjugates are discussed.  相似文献   

6.
Complementary experiments were performed to indicate the presence or absence of sialic acids in axenically cultured Panagrellus redivivus and Caenorhabditis elegans. Competitive displacement experiments with radiolabeled Limax flavus agglutinin demonstrated the presence of sialic acid in nematodes grown in medium which contained liver extract as a growth factor but the absence of sialic acid when heme was substituted for liver extract. This finding suggested that sialic acid present in the liver medium was responsible for conflicting results of other studies. Transmission electron microscopy of thin sections from nematodes labeled with an LFA-ferritin conjugate revealed no label to the surface area of the cephalic chemosensilla. Fluorometric analysis with a modification of the thiobarbituric acid assay was negative for sialic acid. Analyses by gas chromatography-mass spectrometry, sensitive to the high picomole range, were also negative for sialic acid. Taken together the results provide evidence for the absence of sialic acid in P. redivivus and C. elegans using the most sensitive and diagnostic technique currently available.  相似文献   

7.
The histochemistry of glycoproteins (GP) in the mucous cells of the gills of the silverside Odontesthes bonariensis was identified with: (1) oxidizable vicinal diols; (2) sialic acid and some of their chain variants, carbon 7 ((7) C), carbon 8 ((8) C) or carbon 9 ((9) C); (3) sialic acid residues without O-acyl substitution and with O-acyl substitution at (7) C, (8) C or (9) C; (4) carboxyl groups and (5) sulphate groups. A battery of seven biotinylated lectins allowed GPs sugar residues to be distinguished. Mucous cells showed the presence of neutral, sulphated and sialylated GPs. Dolichos biflorus agglutinin (DBA) and Glycine max agglutinin (SBA) showed strong positive staining; Arachis hypogaea agglutinin (PNA), Ricinus communis agglutinin-I (RCA-I) and Triticum vulgaris agglutinin (WGA) showed moderate staining, while Ulex europaeus agglutinin-I (UEA-I) was completely negative.  相似文献   

8.
The cell-surface expression of sialic acids in two isolates of Candida albicans was analyzed by thin-layer and gas chromatography, binding of lectins, colorimetry, sialidase treatment and flow cytofluorimetry with fluorescein-labeled lectins. N-acetylneuraminic acid (NANA) was the only derivative found in both strains of C. albicans grown in a chemically defined medium. Its identification was confirmed by mass spectrometry in comparison with an authentic standard. The density of sialic acid residues per cell ranged from 1. 6x10(6) to 2.8x10(6). The surface distribution of sialic acids over the entire C. albicans was inferred from labeling with fluorescein-Limulus polyphemus and Limax flavus agglutinins and directly observed by optical microscopy with (FITC)-Sambucus nigra agglutinin (SNA), abrogated by previous treatment of yeasts with bacterial sialidase. Sialidase-treated yeasts generated beta-galactopyranosyl terminal residues that reacted with peanut agglutinin. In C. albicans N-acetyl-neuraminic acids are alpha2,6- and alpha2,3-linked as indicated by yeast binding to SNA and Maackia amurensis agglutinin. The alpha2,6-linkage clearly predominated in both strains. We also investigated the contribution of sialic acids to the electronegativity of C. albicans, an important factor determining fungal interactions in vivo. Adhesion of yeast cells to a cationic solid phase substrate (poly-L-lysine) was mediated in part by sialic acids, since the number of adherent cells was significantly reduced after treatment with bacterial sialidase. The present evidence adds C. albicans to the list of pathogenic fungi that synthesize sialic acids, which contribute to the negative charge of fungal cells and have a role in their specific interaction with the host tissue.  相似文献   

9.
Release of sialic acid from the glycoproteins of the normal human erythrocyte surface by neuraminidase was investigated. The glycoproteins of the membrane were separated by electrophoresis in sodium dodecylsulfate polyacrylamide gels. Sialic acid was determined in the sliced gel by a modification of the 2-thiobarbituric acid method, revealing three sialic acid-containing glycoproteins. Treatment of intact erythrocytes with neuraminidase to remove varying amounts of sialic acid indicates that all the glycoproteins are essentially equally accessible to the neuraminidase when 20%–60% of the sialic acid is removed. Similar but not quite identical results were obtained with isolated erythrocyte membranes.Treatment of intact cells with the lectins concanavalin A or phytohemagglutinin-P resulted in shielding of about 25% and 50%, respectively, of the sialic acid from neuraminidase. Concanavalin A blocked sialic acid release over long time periods and with high concentrations of neuraminidase. In contrast, the sialic acid shielding by phytohemagglutinin-P can be overcome by high concentrations of neuraminidase. Both lectins were found to shield the various glycoproteins selectively, with different patterns of shielding. Wheat germ agglutinin exhibited no detectable effect on the susceptibility of the erythrocyte sialic acid to neuraminidase.  相似文献   

10.
Treatment of second-stage juveniles (J2) of Meloidogyne incognita race 1 and M. javanica with soybean agglutinin, Concanavalin A, wheat germ agglutinin, Lotus tetragonolobus agglutinin, or Limax flavus agglutinin or the corresponding competitive sugars for each of these lectins did not alter normal root tissue response of soybean cultivars Centennial and Pickett 71 to infection by M. incognita race 1 or M. javanica. Giant cells were frequently induced in Centennial and Pickett 71 roots 5 and 20 days after inoculation of roots with untreated J2 of a population of M. incognita race 3. Treatment of J2 of M. incognita race 3 with the lectins or carbohydrates listed above caused Centennial, but not Pickett 71, root tissue to respond in a hypersensitive manner to infection by M. incognita race 3. Penetration of soybean roots by J2 of Meloidogyne spp. was strongly inhibited in the presence of 0.1 M sialic acid. Treatment of J2 with sialic acid was not lethal to nematodes, and the inhibitory activity of sialic acid was apparently not caused by low pH. These results suggest that carbohydrates may influence plant-nematode interactions.  相似文献   

11.
Two substantial improvements in sensitivity in the identification of 125I-wheat germ agglutinin-binding glycoproteins on nitrocellulose blots of sodium dodecyl sulfate-polyacrylamide gels are reported. The major improvement in sensitivity (about 30-fold) derives from the use of 2% (w/v) polyvinylpyrrolidone (average Mr 40,000) instead of bovine serum albumin or denatured hemoglobin as the quenching agent (or carrier) during incubation with 125I-wheat germ agglutinin in detergent-free, phosphate-buffered saline. Under these conditions, specific labeling with 125I-wheat germ agglutinin is observed for orosomucoid derivatives that display N-acetylglucosamine or sialic acid residues at the nonreducing termini of their oligosaccharides, as well as for a number of glycoprotein components of a rat hepatocyte plasma membrane fraction. An additional improvement in sensitivity (up to 10-fold) results from an increase in the binding of 125I-wheat germ agglutinin to sialic acid-containing glycoproteins after treatment of the blots with 5 mM sodium metaperiodate followed by 5 mM aniline in the presence of 30 mM sodium cyanoborohydride. This treatment appears to cause the sequential oxidation and reductive phenylamination of the side chain of glycoprotein sialic acid residues.  相似文献   

12.
We examined the interaction between immobilized wheat germ agglutinin and the large, polylactosamine-containing glycans from human erythrocytes and human K-562 erythroleukemic cells. Three classes of interaction were identified. One class of glycan was merely retarded during chromatography. The other two classes were retained and could be distinguished by their ease of displacement with N-acetylglucosamine (GlcNAc); one was a moderate-affinity fraction displaced by 0.1 M GlcNAc and the other was a high-affinity fraction subsequently displaced by 1.0 M GlcNAc. A relatively small fraction of the K-562 polylactosamines were in the high-affinity class. We explored the role that fucose and sialic acid substitutions play in the strength of the lectin-glycan interaction. Although sialic acid is recognized by wheat germ agglutinin, sialylation was not required for the high-affinity interaction, and the presence of sialic acids actually prevented some glycans from binding with high affinity. In contrast, fucose is not part of the binding determinant, yet the removal of fucose resulted in decreased affinity. The possibility that some of these changes in affinity were the result of conformational changes was explored using matrices that had wheat germ agglutinin immobilized at different densities. At low wheat germ agglutinin densities, adult and fetal erythroglycans and K-562 glycophorin-like glycans were not retained by the matrix. As the density increased, the proportion of glycans that were retarded, and ultimately retained, increased. While these increases in the proportions retained occurred in parallel for the three different glycans, the apparent affinities of the glycan-lectin interactions differed. The glycophorin-like glycans were always readily displaced by 0.1 M GlcNAc, even at higher wheat germ agglutinin densities. In contrast, as the wheat germ agglutinin density increased, the proportion of erythroglycans that could be displaced by 0.1 M GlcNAc decreased; at 10 mg/ml immobilized wheat germ agglutinin, greater than 80% of the erythroglycans exhibited this tighter interaction. We suggest that this higher affinity interaction is the result of the large glycans spanning adjacent wheat germ agglutinin molecules, and is determined by the proximity of these molecules and the conformation of the glycans.  相似文献   

13.
The sialic acid-specific leukoagglutinating lectin from the seeds of Maackia amurensis (MAL) has been studied by the techniques of quantitative precipitin formation, hapten inhibition of precipitation, hapten inhibition using an enzyme-linked immunosorbent assay, and lectin affinity chromatography. The ability of the immobilized lectin to fractionate oligosaccharides based on their content of sialic acid has also been investigated. Our results indicate that MAL reacts with greatest affinity with the trisaccharide sequence Neu5Ac/Gc alpha 2,3Gal beta 1,4GlcNAc/Glc. The lectin requires three intact sugar units for binding and does not interact when the beta 1,4-linkage is replaced by a beta 1,3-linkage nor when the "reducing sugar" of the trisaccharide is reduced. Results from enzyme-linked immunosorbent assays show that an N-acetyllactosamine repeating sequence is not required; however, the N-acetyllactosamine repeating sequence does appear to enhance the binding of MAL to a series of glycolipids. In addition, the sialic acid may be substituted with either N-acetyl or N-glycolyl groups without reduction in binding. The C-8 and C-9 hydroxyl groups of sialic acid do not play a role in binding as shown by the strong reaction of periodate-treated glycoproteins. Comparison of the specificity of the three sialic acid-binding lectins indicates that Limax flavus agglutinin binds to Neu5Ac in any linkage and in any position in a glycoconjugate, Sambucus nigra lectin requires a disaccharide of the structure Neu5Ac alpha 2,6Gal/GalNAc, and MAL has a binding site complimentary to the trisaccharide Neu5Ac alpha 2,3Gal beta 1,4GlcNAc/Glc, to which sialic acid contributes less to the total binding affinity than for either S. nigra lectin or L. flavus agglutinin.  相似文献   

14.
A rat liver-specific antigen (RLSA) lost its binding ability to the corresponding monoclonal antibody after treatment with N-glycanase or sialidase, which suggested that the specific binding site might be in a portion of the sugar chain containing sialic acid. The specific antigen reacted with wheat germ agglutinin, lentil lectin, erythroagglutinating phytohemagglutinin and Ricinus communis agglutinin, but not with concanavalin A or peanut agglutinin. These results suggest that the specific antigen has asparagine-linked complex-type sugar chains which might be the binding sites of the monoclonal antibody.  相似文献   

15.
The saxitoxin-binding component of the excitable membrane sodium channel exhibits glycoprotein characteristics as evidenced by its specific interaction with various agarose-immobilized lectins. The detergent-solubilized saxitoxin-binding component interacts quantitatively with immobilized wheat germ agglutinin and concanavalin A and fractionally with immobilized Lens culinaris hemagglutinin and Ricinus communis agglutinin. These lectins preferentially bind N-acetylglucosamine and sialic acid (wheat germ agglutinin), mannose (concanavalin A and Lens cunilaris and galactose (Ricinus communis). Removal of terminal sialic acid residues by neuraminidase markedly decreases binding to immobilized wheat germ agglutinin but uncovers sites capable of interacting with lectins specific for galactose and N-acetylgalactosamine. β-N-acetylglucosaminidase, an exoglycosidase has no effect on the binding of the channel protein to wheat germ agglutinin. Similarly, phospholipase C has no effect on binding of the solubilized toxin binding component to this lectin. Neither wheat germ agglutinin nor concanavalin A free in solution alters the number of toxin binding sites or their affinity for toxin. The sodium channel saxitoxin-binding component appears to be a glycoprotein containing terminal sialic acid residues and internal mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine residues. The toxin binding site is spatially separated from the binding sites for the lectins studied. The effect of these sugar moieties must be considered when evaluating the biophysical parameters of the sodium channel.  相似文献   

16.
Using quantitative fluorimetry with fluoresceinated wheat germ agglutinin, we have been able to investigate in vivo gamma radiation-induced damage at the outer membrane level of rat splenic lymphocytes, namely damage to the glucosidic moieties of membrane glycoproteins and glycolipids. This paper demonstrates that below an irradiation level of 1 gray (Gy), removal of sialic acid is the major feature leading to new exposed specific binding sites for wheat germ agglutinin, since this lectin is specific for sialic acid and N-acetyl-D-glucosamine. Our studies also suggest that above 1 Gy of irradiation more internal damage occurs, since we observed a striking decrease in wheat germ agglutinin binding sites.  相似文献   

17.
Highly glycosylated compounds have been demonstrated in the axonal reticulum elements of the superior cervical ganglion cells of the rat, and this is considered to suggest a connection of the reticulum with the trans Golgi side. In the present study, the axonal reticulum and the Golgi elements were further characterized by post-embedding methods of lectin-gold cytochemistry to determine their carbohydrate residues and to see, more specifically, if sialic acid residues could be detected in the axonal reticulum elements. Therefore, the affinity of neuronal cell structures for Limax flavus agglutinin (LFA), wheat germ agglutinin (WGA), and Ricinus communis agglutinin I (RCA-I) was tested in ultra-thin sections of glycolmethacrylate-embedded material, counterstained with phosphotungstic acid (PTA) at low pH. The trans Golgi network, the Golgi-associated axonal reticulum, the reticulum within axons, the large dense-cored vesicles, and the plasma membranes were reactive for all three lectins used. We conclude that the axonal reticulum elements carry sialic acid residues, relating them to the trans Golgi network. The present results support the concept that the axonal reticulum is an extension of the trans network of the Golgi apparatus specialized for neurosecretion.  相似文献   

18.
To study the regulation of cellular and molecular traffic across the marrow-blood barrier, rat marrow endothelial surface was incubated with ferritin-conjugated concanavalin A, wheat germ agglutinin (WGA), recinus communis agglutinin I, and phytohemagglutinin. Normal animals were compared with those after erythropoietic stimulation (phenylhydrazine-induced hemolysis, phlebotomy). A selective and significant reduction in the density of WGA receptors, but not other lectins was noted congruent to the degree of reticulocytosis. Neuraminidase treatment also reduced WGA binding sites and the surface negative charge as detected by polycationic ferritin (PCF). Thus, the reduction in WGA binding sites, may reflect a decrease in the density of membrane sialic acid, rendering the endothelial surface charge less negative and providing an electrostatic attraction for the negatively charged surface of reticulocytes. The findings may also be explained by an increase in the frequency of WGA-excluding fenestrae in the endothelium. These areas, lacking sialic acid, may provide unstable areas in the membrane suitable for the passage of cells and molecules in both directions. It is concluded that, by modulating the density of sialic acid residues, the endothelium may regulate the traffic of cells and molecules across the marrow-blood barrier.  相似文献   

19.
We used lectin cytochemistry and confocal microscopy to examine the distribution of sialic acid in epithelial cells. Maackia amurensis lectin and Sambuccus nigra agglutinin were used to detect alpha2,3 and alpha2,6 sialic acid, respectively. In Caco-2, HT-29 5M12, and MCF-7 cells, which express sialic acid mainly in one type of linkage, the majority of the signal was observed in the apical membrane. In cells that bound both lectins, alpha2,3 sialic acid was distributed apically, whereas alpha2,6 sialic acid showed a broader distribution. In IMIM-PC-1 cultures, alpha2,3 sialic acid was detected mainly in the apical membrane, whereas alpha2,6 sialic acid was more abundant in the basolateral domain of polarized cells. In these cells, treatment with GalNAc-O-benzyl led to reduced alpha2,3 levels and to an increase and redistribution of alpha2,6 to the apical domain. Similarly, sialic acid was predominantly expressed apically in all epithelial tissues examined. In conclusion, (a) sialic acid is mainly distributed to the apical membrane of epithelial cells, (b) there is a hierarchy in the distribution of sialic acids in polarized epithelial cells, i.e., alpha2,3 is preferred to alpha2,6 in the apical membrane, and (c) IMIM-PC-1 cells are a good model in which to study the regulation of the levels and distribution of sialic acids.  相似文献   

20.
Basement membranes (BMs) of vertebrates and invertebrates have been shown to contain glycoproteins and proteoglycans, which include oligosaccharides and glycosaminoglycans. Lectin binding sites were characterized in the BM of gastrulating embryos of the starfish, Pisaster ochraceus. In early and mid-gastrulae, the fluorescein isothiocyanate (FITC)-lectin conjugates of concanavalin A (Con A) and wheat germ agglutinin (WGA) reveal the presence of mannose/glucose and glucosamine/sialic acid residues in the BM of all regions of the embryos. However, in the late gastrula embryo, an apparent reduction of these components is observed over the esophageal BM. Ultrastructural studies using the lectin-gold conjugates Con A, Limax flavus agglutinin (LFA), specific for sialic acid, and Dolichos biflorus agglutinin (DBA), specific for galactosamine, demonstrate that most mannose/glucose and galactosamine-containing residues lie in the lamina densa, whereas most sialic acid residues are located over the lamina lucida. In addition, a statistical analysis of lectin binding in the late gastrula embryo reveals that the amount of labelling with both Con A and LFA is significantly reduced in the esophageal region, suggesting that mannose/glucose and sialic acid residues are reduced in this region. These results confirm the observations of the FITC-lectin studies described above. They also confirm earlier studies that demonstrated a difference in BM morphology of the esophageal region (Crawford, '88). Mesenchyme cells, some of which arise from the forming coeloms (Crawford, '90), and which may represent a distinct population, colonize exclusively on this esophageal BM, where they later differentiate into muscle. Quantitative differences in BM glycoconjugates may act to direct the presumptive muscle cells to the region of the esophagus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号