首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aedes aegypti chorion peroxidase (CPO) plays a crucial role in chorion hardening by catalyzing chorion protein cross-linking through dityrosine formation. The enzyme is extremely resistant to denaturing conditions, which seem intimately related to its post-translational modifications, including disulfide bond formation and glycosylation. In this report, we have provided data that describe a new type of glycosylation in CPO, where a mannose is linked to the N-1 atom of the indole ring of Trp residue. Through liquid chromatography/electrospray ionization/tandem mass spectrometry and de novo sequencing of CPO tryptic peptides, we determined that three of the seven available Trp residues in mature CPO are partially (40-50%) or completely mannosylated. This conclusion is based on the following properties of the electrospray ionization/tandem mass spectrometry spectra and the enzymatic reaction of these peptides: 1) the presence of a 162-Da substituent in each Trp residue; 2) the presence of abundant fragments of m/z 163 ([Hex + H]) and [M + H - 162] (typical for N-glycosides); 3) the absence of a loss of 120 Da (this loss is typical for aromatic C-glycosides); and 4) the cleavage of the glycosidic linkage by PNGase A or F (typical for N-glycans). These results establish that a C-N bond is formed between the anomeric carbon of a mannose residue and the N-1 atom of the indole ring of Trp. This is the first report that provides definitive evidence for N-mannosylation of Trp residues in a protein. In addition, our data demonstrate that PNGase can hydrolyze Trp N-linked mannose in peptides, which is unusual because no typical beta-amide bond is present in the Trp-mannosyl moiety. Results of this study should stimulate research toward a comprehensive understanding of physiology and biochemistry of Trp N-mannosylation in proteins and the overall biochemical mechanisms of PNGase-catalyzed reactions.  相似文献   

2.
It was discovered that 2,3-bis-(2-methoxy-phenyl)-5-phenylamino-[1,2,4]-thiadiazolium bromide (1), a 1,2,4-thiadiazolium derivative, could be reduced to the corresponding imidoylthiourea, 1-[(2-methoxy-phenyl)-(2-methoxy-phenylimino)-methyl]-3-phenyl-thiourea (3), by some biologically interesting reducing reagents including glutathione, cysteine, and ascorbic acid. The reduction also occurred in Sprague-Dawley rat and Yorkshire swine plasma, suggesting that thiol containing biological molecules existing in the plasma are mainly responsible for this reaction. A facile method for preparation of 3 from 1 was established by using 2-thioethanol as reaction reagent as well as solvent. The structure of 3 was fully characterized using nuclear magnetic resonance (NMR) and mass spectrometry with electrospray ionization source (ESI-MS). Those new findings could shed light on the development of 1,2,4-thiadiazolium derivatives for their potential pharmaceutical applications.  相似文献   

3.
4.
5.
Tryptamine was degraded by incubation with rat brain homogenate to an unknown product. The reaction was stimulated by the nonionic detergents Triton X-100 and Lubrol PX and less by the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]1-propanesulfonate (CHAPS). The same results were obtained with pig brain and bovine brain. The monoamine oxidase inhibitor pargyline inhibited the reaction strongly, indicating the participation of the enzyme on the reaction. Addition of 17,000 g supernatant from rat brain homogenate increased the formation effectively whereas phospholipids or chloroform/methanol (7:3) extract from the 17,000 g supernatant showed only little or no effect. Chromatographic and electrophoretic properties as well as the chemical reaction of the product with specific reagents suggest that the compound consists of an indole part and an amino acid part. The product could be identified by fast atom bombardment mass spectrometry and by comparison with the synthetic substance (4R)-2-(3-indolylmethyl)-1,3-thiazolidine-4-carboxylic acid. It is formed by the enzymatic oxidation of tryptamine producing indole-3-acetaldehyde which spontaneously cyclizes with free L-cysteine from the tissue. The results suggest that the reaction of biogenic aldehydes with brain macromolecules may proceed via an analogous reaction.  相似文献   

6.
D-erythro-Sphingosine is known to be phosphorylated by sphingosine kinase to yield sphingosine-1-phosphate. With the importance of sphingosine-1-phosphate in biological functions being made evident by recent research, a selective and convenient method of assay to measure sphingosine kinase activity is required. Here we developed a new sphingosine kinase assay using murine teratocarcinoma mutant F9-12 cells and electrospray ionization tandem mass spectrometry (ESI–MS/MS) with direct infusion. Sphingosine-1-phosphate in the crude extract of enzyme reaction mixture was selectively characterized and quantitated using precursor ion scanning for [PO3]- in the negative electrospray ionization mode. The method was successfully validated for an activator and an inhibitor of sphingosine kinase. Direct quantitation of S1P without the use of radioactive reagents, chemical derivatization, and extensive chromatographic separation enables simplified assay for sphingosine kinase activity at the cellular system level, and the use of a structural analog as an internal standard provides robustness to the assay.  相似文献   

7.
Bakhtiar R  Ramos L  Tse FL 《Chirality》2001,13(2):63-74
Recent advances in mass spectrometry have rendered it an attractive and versatile tool in industrial and academic research laboratories. As a part of this rapid growth, a considerable body of literature has been devoted to the application of mass spectrometry in studies involving enantioselectivity, molecular recognition, and supramolecular chemistry. In concert with separation techniques such as capillary electrophoresis and liquid chromatography, mass spectrometry allows rapid characterization of a large array of molecules in complex mixtures. A majority of these findings have been made possible by the introduction of 'soft-ionization' techniques such as electrospray ionization interface. Other techniques such as atmospheric pressure chemical ionization mass spectrometry have been widely used as a rugged interface for quantitative liquid chromatography-mass spectrometry. Herein, we present a brief overview of the above techniques accompanied with several examples of enantioselective capillary electrophoresis- and liquid chromatography-mass spectrometry in drug discovery and development. Although the emphasis of this article is on quantitative enantiomeric chromatography-mass spectrometry, we envisage that similar strategies are adaptable in qualitative studies.  相似文献   

8.
In the present study, we compared six different solubilization buffers and optimized two-dimensional electrophoresis (2-DE) conditions for human lymph node proteins. In addition, we developed a simple protocol for 2-D gel storage. Efficient solubilization was obtained with lysis buffers containing (a) 8 M urea, 4% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), 40 mM Tris base, 65 mM DTT (dithiothreitol) and 0.2% carrier ampholytes; (b) 5 M urea, 2 M thiourea, 2% CHAPS, 2% SB 3-10 (N-decyl-N,N-dimethyl-3-ammonio-1-propanesulfonate), 40 mM Tris base, 65 mM DTT and 0.2% carrier ampholytes or (c) 7 M urea, 2 M thiourea, 4% CHAPS, 65 mM DTT and 0.2% carrier ampholytes. The optimal protocol for isoelectric focusing (IEF) was accumulated voltage of 16,500 Vh and 0.6% DTT in the rehydration solution. In the experiments conducted for the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), best results were obtained with a doubled concentration (50 mM Tris, 384 mM glycine, 0.2% SDS) of the SDS electrophoresis buffer in the cathodic reservoir as compared to the concentration in the anodic reservoir (25 mM Tris, 192 mM glycine, 0.1% SDS). Among the five protocols tested for gel storing, success was attained when the gels were stored in plastic bags with 50% glycerol. This is the first report describing the successful solubilization and 2D-electrophoresis of proteins from human lymph node tissue and a 2-D gel storage protocol for easy gel handling before mass spectrometry (MS) analysis.  相似文献   

9.
Over the years several β-glucan transferases from yeast and fungi have been reported, but enzymes with such an activity from bacteria have not been characterized so far. In this work, we describe the cloning and expression of genes encoding β-glucosyltransferase domains of glycosyl hydrolase family GH17 from three species of proteobacteria: Pseudomonas aeruginosa PAO1, P. putida KT2440 and Azotobacter vinelandii ATCC BAA-1303. The encoded enzymes of these GH17 domains turned out to have a non-Leloir trans-β-glucosylation activity, as they do not use activated nucleotide sugar as donor, but transfer a glycosyl group from a β-glucan donor to a β-glucan acceptor. More particularly, the activity of the three recombinant enzymes on linear (β1?→?3)-linked gluco-oligosaccharides (Lam-Glc(4-9)) and their corresponding alditols (Lam-Glc(4-9)-ol) was studied. Detailed structural analysis, based on thin-layer chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, electrospray ionization mass spectrometry, and 1D/2D (1)H and (13)C nuclear magnetic resonance data, revealed diverse product spectra. Depending on the enzyme used, besides (β1?→?3)-elongation activity, (β1?→?4)- or (β1?→?6)-elongation, or (β1?→?6)-branching activities were also detected.  相似文献   

10.
In this article, we describe a fast and specific method to measure 5FU with HPLC tandem-mass spectrometry. Reversed-phase HPLC was combined with electrospray ionization tandem mass spectrometry and detection was performed by multiple-reaction monitoring. Stable-isotope-labeled 5FU (1,3-15N2-5FU) was used as an internal standard. 5FU was measured within a single analytical run of 16 min with a lower limit of detection of 0.05 microM. The intra-assay variation and inter-assay variation of plasma with added 5FU (1 microM, 10 microM, 100 microM) was less then 6%. Recoveries of the added 5FU in plasma were > 97%. Analysis of the 5FU levels in plasma samples from patients with the HPLC tandem mass spectrometry method and a HPLC-UV method yielded comparable results (r2 = 0.98). Thus, HPLC with electrospray ionization tandem mass spectrometry allows the rapid analysis of 5FU levels in plasma and could, therefore, be used for therapeutic drug monitoring.  相似文献   

11.
The effects of a variety of detergents and neutral salts on the structure of the eukaryotic high molecular mass aminoacyl-tRNA synthetase complex have been directly determined by observing alterations in the composition, sedimentation behavior, and electron microscopic appearance of the rabbit reticulocyte complex. The intact complex is shown to exhibit the enzymatic activities, polypeptide composition, relative stoichiometry, and morphological features that are characteristic of this eukaryotic multienzyme particle. The structure of the high molecular mass aminoacyl-tRNA synthetase complex is seen to be resistant to both ionic and nonionic detergents. However, both 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and deoxycholate induce formation of large protein aggregates. In contrast, the chaotropic salts LiCl and NaSCN both selectively remove individual polypeptides from the high molecular mass aminoacyl-tRNA synthetase complex and promote formation of specific particulate subcomplexes which have distinct sizes, polypeptide compositions, and structural features. These data support the view that many of the protein interactions within the high molecular mass amino-acyl-tRNA synthetase complex are hydrophobic in nature. This study also provides direct evidence that the complex contains a core of tightly interacting synthetases onto which the remaining polypeptides are arrayed. The structural alterations observed here may account for the ability of these reagents to markedly inhibit several enzymatic activities within the complex.  相似文献   

12.
Mass spectrometry offers a potential means of measuring virtually all enzyme-catalyzed reactions by simultaneously measuring the concentrations of substrates, products, and intermediates where there are differences in mass between them. To perform these measurements the reaction mixture must be aged for different times and then ionized. Electrospray ionization mass spectrometry provides the most direct means of measuring these reactions. Here we describe a simple reaction mixing and ageing attachment for an electrospray ionization mass spectrometer, built from commercially available components. We have employed this device to measure the kinetics of a model reaction, namely the hydrolysis of N2-(carbobenzyloxy)-L-lysine-p-nitrophenyl ester-catalyzed by trypsin. In this way we were able to measure the kinetics of substrate depletion, product formation, and changes in both free enzyme and acyl-enzyme intermediate concentration in the approach to steady state. With this device we were able to measure reaction times down to about 640 ms.  相似文献   

13.
Sulfonyl chlorides substituted with functional groups having high proton affinity can serve as derivatization reagents to enhance the sensitivity for steroidal estrogens in liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The most commonly used reagent for derivatization of estrogens for LC-ESI-MS/MS is dansyl chloride. In this study, we compared dansyl chloride, 1,2-dimethylimidazole-4-sulfonyl (DMIS) chloride, pyridine-3-sulfonyl (PS) chloride, and 4-(1H-pyrazol-1-yl)benzenesulfonyl (PBS) chloride for derivatization of 17beta-estradiol (E2) prior to LC-ESI-MS/MS. The product ion spectra of the dansyl and DMIS derivatives were dominated by ions representing derivatization reagent moieties. In contrast, the product ion spectrum of the PS derivative of E2 and, to a lesser extent, the PBS derivative, showed analyte-specific fragment ions. Derivatization with PS chloride was therefore chosen for further investigation. The product ion spectrum of the PS derivative of E2 showed intense ions at m/z 272, assigned to the radical E2 cation, and at m/z 350, attributed to the loss of SO(2) from the [M+H](+) ion. Third-stage mass spectrometry of the PS derivative of E2 with isolation and collisional activation of the m/z 272 ion resulted in steroid C and D ring cleavages analogous to those observed in electron ionization mass spectrometry. The product ion spectra of the PS derivatives of estrone, 17alpha-ethinylestradiol, equilin, and equilenin showed similar estrogen-specific ions. Using derivatization with PS chloride, we developed an LC-ESI-MS/MS method with multiple reaction monitoring of primary and confirmatory precursor-to-product ion transitions for the determination of E2 in serum.  相似文献   

14.
Electrospray mass spectrometry and tandem mass spectrometry have aided the structural characterization of the diastereoisomeric cis- and trans-1-(3-benzoyloxymethyl-1,3-dihydrobenzo[c]furan-1-yl)thymines and the four enantiomerically pure stereoisomers of uracil analogues. Low-energy collision-induced dissociation MS/MS analysis of the various precursor molecular and cluster ions confirmed the characteristic fingerprint pattern obtained in the conventional electrospray spectra and allowed a convenient method for the characterization of novel 1,3-dihydrobenzo[c]furan nucleosides.  相似文献   

15.
Bacteriophages belonging to the Caudovirales order possess a tail acting as a molecular machine used during infection to recognize the host and ensure high-efficiency genome delivery to the cell cytoplasm. They bear a large and sophisticated multiprotein organelle at their distal tail end, either a baseplate or a tail-tip, which is the control center for infectivity. We report here insights into the baseplate assembly pathways of two lactoccocal phages (p2 and TP901-1) using electrospray ionization-mass spectrometry. Based on our "block cloning" strategy we have expressed large complexes of their baseplates as well as several significant structural subcomplexes. Previous biophysical characterization using size-exclusion chromatography coupled with on-line light scattering and refractometry demonstrated that the overproduced recombinant proteins interact with each other to form large (up to 1.9 MDa) and stable assemblies. The structures of several of these complexes have been determined by x-ray diffraction or by electron microscopy. In this contribution, we demonstrate that electrospray ionization-mass spectrometry yields accurate mass measurements for the different baseplate complexes studied from which their stoichiometries can be discerned, and that the subspecies observed in the spectra provide valuable information on the assembly mechanisms of these large organelles.  相似文献   

16.
Liquid chromatography coupled with mass spectrometry and tandem mass spectrometry has been applied to investigate the in vivo metabolism of ginsenoside Rb(1) in rat. Both positive electrospray ionization mass spectrometry and negative electrospray ionization mass spectrometry were used to identify the Rb(1) and its metabolites in rat plasma, urine, and feces samples. Oxygenation and deglycosylation were found to be the major metabolic pathways of Rb(1) in rat. A total of nine metabolites were detected in urine and feces samples collected after intravenous and oral administration. Deglycosylated metabolism of Rb(1) generated other ginsenosides as the major metabolites, such as Rd, Rg(3) or F(2), Rh(2), or C-K. This result indicates that the ginsenoside Rb(1) has many pharmacological activities and could be used as a prodrug.  相似文献   

17.
Lu K  Wang W  Xie Z  Wong BS  Li R  Petersen RB  Sy MS  Chen SG 《Biochemistry》2000,39(44):13575-13583
The doppel protein (Dpl) is a newly recognized prion protein (PrP)-like molecule encoded by a novel gene locus, prnd, located on the same chromosome as the PrP gene. To study the structural features of Dpl, we have expressed recombinant human Dpl corresponding to the putative mature protein domain (residues 24-152) in Escherichia coli. The primary structure of the recombinant Dpl 24-152 was characterized using gel electrophoresis, N-terminal Edman sequencing, matrix-assisted laser desorption ionization mass spectrometry, and electrospray ionization mass spectrometry. Dpl 24-152 was shown to contain two disulfide bonds (Cys94-Cys145 and Cys108-Cys140). The secondary structure of Dpl was analyzed using far-UV circular dichroism spectroscopy. Dpl 24-152 was found to be an alpha-helical protein having a high helical content (40%). Dpl 24-152 exhibited characteristics of a thermodynamically stable protein that undergoes reversible and cooperative thermal denaturation. In addition, Dpl was found to be soluble and sensitive to proteinase K digestion. Therefore, Dpl 24-152 possesses biochemical properties similar to those of recombinant PrP. This study provides knowledge about the molecular features of human Dpl that will be useful in further investigation into its normal function and the role it may play in neurodegenerative diseases.  相似文献   

18.
Raphidophyte algae (Raphidophyceae) can be divided according to pigment composition and plastid ancestry into two categories, brown‐ and green‐pigmented taxa. We sought to examine if there are any biochemical differences in plastid lipid composition between the two groups. To this end, the composition and positional distribution of fatty acids of the chloroplast lipids, mono‐ and digalactosyldiacylglycerol (MGDG and DGDG, respectively), were examined using positive‐ion electrospray/mass spectrometry (ESI/MS) and electrospray/mass spectrometry/mass spectrometry (ESI/MS/MS). Brown‐pigmented strains from the genera Chattonella, Fibrocapsa, and Heterosigma primarily consisted of 20:5/18:4 (sn‐1/sn‐2) MGDG and 20:5/18:4 DGDG, while isolates of the green‐pigmented raphidophyte Gonyostomum semen (Ehrenb.) Diesing contained these as well as 18:3/18:4 MGDG and DGDG, thus underscoring its green algal plastid lineage. Although previously unseen without the regiochemical information provided by ESI/MS/MS, Chattonella subsalsa Biecheler possessed 20:5/18:3 DGDG as a major form, a potential biosynthetic intermediate in the production of 20:5/18:4 DGDG. These results provide a modern interpretation of the fatty acid regiochemistry of MGDG and DGDG.  相似文献   

19.
Papaver alkaloids play a major role in medicine and pharmacy. In this study, [ring-(13)C(6)]-tyramine as a biogenetic precursor of these alkaloids was fed to Papaver somniferum seedlings. The alkaloid pattern was elucidated both by direct infusion high-resolution ESI-FT-ICR mass spectrometry and liquid chromatography/electrospray tandem mass spectrometry. Thus, based on this procedure, the structure of about 20 alkaloids displaying an incorporation of the labeled tyramine could be elucidated. These alkaloids belong to different classes, e.g. morphinan, benzylisoquinoline, protoberberine, benzo[c]phenanthridine, phthalide isoquinoline and protopine. The valuable information gained from the alkaloid profile demonstrates that the combination of these two spectrometric methods represents a powerful tool for evaluating biochemical pathways and facilitates the study of the flux of distant precursors into these natural products.  相似文献   

20.
The dynamics of enzyme-catalyzed glutathione conjugation was studied by electrospray quadrupole/time-of-flight (Q-TOF) mass spectrometry with a nanospray interface. After incubation of human glutathione S-transferase A1-1 (GT) with glutathione (GSH) and an electrophilic substrate, electrospray indicated the presence of enzyme/product adducts such as [2GT + product], [2GT + GSH' + product], and [2GT + 2 products] as well as [2GT] and [2GT + GSH']. The relative abundance of GT/product adduct ions increased with incubation time. The wide m/z range of detection (m/z 300-5000) allowed the observation of product, suggested to be released from enzyme/product adducts, in the same mass spectrum. The noncovalent complexes of GT/product were completely replaced by GT/inhibitor complexes following the addition of GT inhibitor to the incubation mixture. Furthermore, a collision-activated decomposition analysis of these ion species provided us with useful information to interpret or identify ion species. The results suggest that electrospray Q-TOF mass spectrometry is a powerful approach for studying the dynamics of the enzyme reaction as well as the structure of enzyme complexes at high sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号