首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 377 毫秒
1.
Underyearling Lake Inari Arctic charr Salvelinus alpinus were acclimated to 11·0) C for 3 weeks, and then one group was maintained at 11·0) C and others were exposed to 14·4) Cconst, 17·7) Cconst or a diel fluctuating temperature of 14·3° C ± 1° C (14·3° Cfluc). Routine rates of oxygen consumption and ammonia excretion were measured over 10 days before the temperature change and over 31 days following the change. Measurements were made on fish that were feeding and growing. The temperature increase produced an immediate increase in oxygen consumption. There was then a decline over the next few days, suggesting that thermal acclimation was rapid. For groups exposed to constant temperature there was an increase in oxygen consumption ( M accl, mg kg−1 h−1) with increasing temperature ( T ), the relationship being approximated by an exponential model: M accl= 46·53e0·086 T . At 14·3° Cfluc oxygen consumption declined during the 3–4 days following the temperature shift, but remained higher than at 14·4° Cconst. This indicates that small temperature fluctuations have some additional influences that increase metabolic rate. Ammonia excretion rates showed diel variations. Excretion was lower at 11° Cconst than at other temperatures, and increases in temperature had a significant effect on ammonia excretion rate. Fluctuating (14·3° Cfluc) temperature did not influence ammonia excretion relative to constant temperature (14·4° Cconst).  相似文献   

2.
Cod were acclimated to 5 and 15° C (cold and warm acclimation, respectively) for at least 43 days after which tissue-somatic indices, tissue protein, DNA content, and cytochrome c oxidase (CCO) activity were measured. Liver, stomach, intestine, total heart and ventricle-somatic indices were all increased significantly in the cold acclimated animals compared with their warm acclimated counterparts. There were no differences in gill or white muscle-somatic indices between the acclimation temperatures. Tissue protein concentration (mg protein g tissue−1) was generally unaffected by temperature acclimation. Cold acclimation resulted in higher white muscle and lower ventricle CCO specific activities(μmol cytochrome c oxidized min−1· g tissue−1) compared with the respective warm acclimated tissues. No significant differences in CCO specific activity were observed in the remaining tissues (when measured at an intermediate temperature of 10° C). Total tissue CCO activity (measured at an intermediate temperature of 10° C) did not differ significantly between the cold and warm acclimated fish.  相似文献   

3.
Fed and starved yearling roach, Rutilus rutilus . were subjected to a sublethal copper contamination of 80 μg Cu × l−1 for 7 days. Copper accumulation was determined by atomic absorption spectroscopy. In both fed and starved fishes, the gill tissues showed significant uptake of copper, while the liver tissues of only starved specimens showed significant accumulation. Refeeding roach after 7 days of starvation and contamination resulted in a significant decrease of liver copper content. No copper release from the liver occurred if, after cessation of exposure, starvation was continued. Analysis of liver ultrastructure demonstrated no pathological lesions or copperspecific alterations. Cellular changes represented combined influences of nutrition and of copper. Qualitative as well as quantitative results provide evidence that the nutritional status of a fish is of great importance in modifying its response to sublethal copper contamination.  相似文献   

4.
The metabolic response of juvenile coho salmon Oncorhynchus kisutch to different salinities was examined, using whole-animal oxygen consumption rates and gill Na+, K+-ATPase activities as indicators of osmoregulatory energetics. Coho salmon smolts were acclimated to fresh water (FW), isosmotic salinity (ISO, 10‰) and sea water (SW, 28‰) and were sampled for up to 6 weeks for plasma levels of cortisol, glucose and ions (Na+, K+, Cl), gill Na+, K+-ATPase activity and oxygen consumption rates. Following an initial adjustment period, plasma constituents in SW fish returned to near-FW values, indicating that the fish were acclimated to SW by day 21. Gill Na+, K+-ATPase activities on days 21 and 42 were lowest in ISO, higher in FW and highest in SW. This result is consistent with the idea that less energy would be required to maintain ion balance in an isosmotic environment, where the ionic gradients between extracellular fluid and water would be minimal. Oxygen consumption rates of swimming fish (1 body length s−1), however, did not differ significantly between the three test salinities after 6 weeks. The results of this study suggest that the metabolic response of juvenile salmonids to changes in salinity is dependent on life-history stage (e.g. fry v . smolt), and that oxygen consumption rates do not necessarily reflect osmoregulatory costs.  相似文献   

5.
Bluegill were exposed to copper (2–0 mg/1−1 unfiltered) for 24, 48, 72 or 96 h at 24° C. This concentration approximated the 96 h LC20. Water content of liver increased 4–8% after 24 h exposure and muscle 4–6% by 48 h. These changes persisted throughout the 96 h experiments. Copper exposed fish exhibited decreases in muscle ATP, ADP, total adenylates, and energy charge by 48 h. There was a trend toward recovery of ATP with further exposure. Liver ATP of exposed fish was lower than controls at all intervals with the greatest difference evident at 48 h. No significant changes in brain adenylates were observed. Muscle and liver lactic acid was unchanged at 48 h exposure, therefore tissue hypoxia was not the cause of the adenylate changes. It was concluded that copper causes decreases in muscle and liver ATP several days before probable death of copper exposed fish and the changes seen are the result of dilution by increased tissue water, and the copper acting on certain cellular enzymes involved in detoxification and energy metabolism.  相似文献   

6.
Effects of salinity on the ionic balance and growth of juvenile turbot   总被引:7,自引:0,他引:7  
The effects of salinity changes (27, 19 and 10‰) on seawater-adapted juvenile turbot were studied on their plasma osmolarity and ion concentrations, on oxygen consumption, on gill Na+,K+-ATPase activity after 3 months and on growth parameters. All plasma concentrations (except chloride) were unchanged, suggesting that fish were well adapted to their environment. Oxygen consumption was significantly decreased in the 19 and 10‰ groups, where fish weighed significantly more 105 days after transfer than fish maintained in sea water. These results, and the fact that apparent food conversion rates were lower in a diluted environment, suggest that on a long term schedule growth conditions could be improved by adaptation to brackish waters (salinities between 10 and 19‰). The effects of transfer from sea water to 27, 19, 10 and 5‰ were also followed during the first 3 weeks. With salinity 10‰ a steady state was reached on day 21 with all plasma values within the same range. The significant differences observed in osmolarity, plasma ion concentrations and Na+,K+-ATPase activity 3 weeks after transfer of juveniles to 5‰ salinity, compared with transfers in higher salinities, suggest that there is a threshold of acclimation of turbot to a hypotonic environment.  相似文献   

7.
Body energy partitioning was examined for field-caught, adult walleye pollock; additional laboratory studies were conducted on fish held under controlled temperature conditions at Seward, Alaska.
Average consumption for pollock feeding daily was 0.5% of body weight (3100 cal) at 5°C, resulting in an average growth of 0.12% body weight day−1. These results suggest that large pollock grow at similar rates and have similar food conversion efficiencies to those of Atlantic cod held at similar temperatures.
Resting metabolic rates measured on adult fish were combined with similar data from juveniles to calculate a regression of specific metabolic rate against wet weight: y = 173x−026. Maintenance rations amounted to 4.8 cal g−1 day−1 at 5°C, very close to the 0.28% value for juveniles. Estimation of metabolic rate using maintenance ration data resulted in values that were 55% higher than those obtained from oxygen consumption data for unfed fish. Weight loss during starvation was 0.18% of body weight day−1 at 5°C, corresponding roughly to a starvation metabolic rate 50% lower than the resting metabolic rate we report.
We estimate that an adult pollock will lose about 37% of its prespawning body weight and about 46% of its body energy during spawning. These losses result, primarily, from changes in the weight of gonad, liver and somatic tissues as opposed to changes in specific energy content of those tissues.  相似文献   

8.
Variation in respiratory traits was quantified between two populations of the sailfin molly Poecilia latipinna (one from a periodically hypoxic salt marsh, Cedar Key, and one from a chronically normoxic river site, Santa Fe River). Two suites of characters were selected: traits that may show both short‐term acclimation response and interdemic variation in acclimation response (metabolic rate, critical oxygen tension and respiratory behaviour), and those that are not likely to respond to short‐term acclimation but may vary among populations (gill morphometric characters). Sailfin mollies from the salt marsh, acclimated to hypoxia (1 mg l−1, c . 20 mmHg) for 6 weeks, spent less time conducting aquatic surface respiration and had lower gill ventilation rates than hypoxia‐acclimated conspecifics from the well‐oxygenated river site. Poecilia latipinna acclimated to hypoxia exhibited a lower critical oxygen tension ( P c) than fish acclimated to normoxia; however, there was also a significant population effect. Poecilia latipinna from Cedar Key exhibited a lower P c than fish from the Santa Fe River, regardless of acclimation. Cedar Key fish had a 14% higher mean gill surface area relative to fish from the Santa Fe River, a character that could account, at least in part, for their greater tolerance to hypoxia.  相似文献   

9.
Abstract. Third-instar larvae of the goldenrod gall fly ( Eurosta solidaginis Fitch) live inside ball galls on goldenrod plants from summer to the following spring.Because galls are highly exposed to the weather, larvae experience substantial variations in body temperature.This study documents the oxygen consumption of gall fly larvae with regard to the effects of ambient temperature, seasonal conditioning, and prior exposure to subzero temperature.The body mass of larvae doubles between the late summer and the autumn; it subsequently undergoes a modest decline by early winter.The O2, consumption of field-acclimatized larvae increases with ambient temperature, especially between 0 and 10°C (Q10= 2.6-3.4).The thermal sensitivity of metabolism declines at higher ambient temperatures, most notably during the autumn/early winter.After exposure to 15°C for 1 week, autumn and early winter larvae maintain much lower rates of O2 consumption than do late summer specimens.Prior exposure to -5°C for 24 h did not influence the O2 consumption of larvae.Low thermal sensitivity of O2 consumption, especially at higher ambient temperatures, is an energy-sparing mechanism during seasonal inactivity.Indeed, the persistence of this metabolic pattern in larvae exposed to 15°C suggests that they have entered a state of diapause.  相似文献   

10.
Atlantic salmon Salmo salar juveniles were fed either fishmeal-based diets (FM) or diets in which soybean meal (SBM) partly replaced the FM from first feeding on. The fish were kept at continuous daylight during the juvenile stage. During the last 3 weeks before reaching 100 g body mass, all fish were subjected to 12L:12D. Starting at 100 g body mass, groups of 60 fish from each feeding background were subjected to continuous light for 12 weeks (short winter), or a square-wave photoperiod cycle to stimulate parr to smolt transformation with 8L:16D during the first 6 weeks, and then continuous light during the last 6 weeks (long winter). After the 12 weeks, 20 fish from each treatment were subjected to 0, 24 or 96 h seawater exposure at a water salinity of 34. Hypo-osmoregulatory ability at seawater exposure was assessed by mortality, intestinal pathology, plasma ion concentrations and osmolality, gill Na+/K+-ATPase activity and element concentrations in the cytoplasm of distal intestinal enterocytes using X-ray microanalysis. The hypo-osmoregulatory capacity was higher in fish kept at short winter than at long winter, apparently due to more rapid development of gill Na+/K+-ATPase activity. Fish fed SBM suffered typical soybean meal-induced histological alterations of the distal intestine and apparent reductions in digestive function in the more proximal gastrointestinal regions. The net osmoregulatory capacity of these fish was maintained, as indicated by higher gill Na+/K+-ATPase activity and lower plasma Na+, Ca2+ and osmolality compared to the FM-fed fish. Thus, feeding SBM did not impair the hypo-osmoregulatory ability of the Atlantic salmon following seawater exposure.  相似文献   

11.
Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to waterborne Cu (22 microg/l) in moderately hard water for up to 28 days. Relative to control fish kept at background Cu levels (2 microg/l), Cu-preexposed fish displayed decreased uptake rates of waterborne Cu via the gills but not of dietary Cu via the gut during 48-h exposures to (64)Cu-radiolabeled water and diet, respectively. At normal dietary and waterborne Cu levels, the uptake rates of dietary Cu into the whole body without the gut were 0.40-0.90 ng. g(-1). h(-1), >10-fold higher than uptake rates of waterborne Cu into the whole body without the gills, which were 0.02-0.07 ng. g(-1). h(-1). Previously Cu-exposed fish showed decreased new Cu accumulation in the gills, liver, and carcass during waterborne (64)Cu exposures and in the liver during dietary (64)Cu exposures. A 3-h gill Cu-binding assay showed downregulation of the putative high-affinity, low-capacity Cu transporters and upregulation of the low-affinity, high-capacity Cu transporters at the gills in Cu-preexposed fish. Exchangeable Cu pools in all the tissues were higher during dietary than during waterborne (64)Cu exposures, and previous Cu exposure reduced waterborne exchangeable Cu pools in gill, liver, and carcass. Overall, these results suggest a quantitatively greater role for the dietary than for the waterborne route of Cu uptake, a key role for the gill in Cu homeostasis, and important roles for the liver and gut in the normal metabolism of Cu in fish.  相似文献   

12.
The oxygen uptake ( V O2), breathing frequency ( f R), breath volume ( V S.R), gill ventilation ( V G) and oxygen extraction (%) from the ventilatory current of four groups of Oreochromis niloticus during graded hypoxia were measured under the following acclimation temperatures: 20. 25. 30 and 35°C. The critical oxygen tensions ( P O2), determined from V O2 v. P O2 of inspired water at each experimental temperature were, respectively. 19±1±3±1. 18±0±4±9, 29±7± 4±1 and 30±2± 0.6 mmHg. The f R remained nearly constant during the reductions of O2 at all the temperatures studied. V G increased discretely from normoxic levels until the P O2 was reached, below which it assumed extremely high values (17-fold higher or more). The increases observed in V G resulted, at all the acclimation temperatures, in an elevation in V S.R rather than in f R. The extraction of O2 decreased gradually from normoxia until the P O2 was reached, below which an abrupt reduction of extraction was recorded, except at 35°C when fish showed a gradual reduction in extraction just below the tension of 80 mmHg.  相似文献   

13.
The effects of sublethal waterborne Zn (2·28 μmol l−1) on Zn binding kinetics to the apical gill surface were studied in juvenile rainbow trout ( Oncorhynchus mykiss ). Two separate radiotracer techniques were employed to ascertain this information. First, in vitro binding kinetic experiments were performed at extremely elevated zinc concentrations (up to 20 mmol l−1) to measure relatively low-affinity binding sites at the gill epithelium. There were no differences in Zn binding parameters ( Km and B max) for fish sublethally exposed to Zn for 21 days and their simultaneous controls. Nevertheless, Ca did have an increased inhibitory effect on Zn binding in Zn-exposed fish suggesting that the anionic groups on the gill epithelium of these fish had been altered in some manner. Additionally, in vivo Zn binding kinetics were investigated using environmentally relevant waterborne Zn concentrations (low μmol l−1 range) to isolate high-affinity Zn binding sites (Ca transporters). No appreciable alterations in the Km and B max values for Zn binding were seen between the Zn-exposed group and its simultaneous control following 15 days of exposure. Furthermore, no significant differences in CC morphometry were observed between treatments. Despite these lack of treatment effects, there were temporal alterations in Km , B max and CC fractional surface area in both groups. It is proposed that these fluctuations are controlled by hormonal factors (such as stanniocalcin), believed to play a role in Ca influx.  相似文献   

14.
The effects of tributyltin (TBT) compounds on gill morphology were examined in the mummichog, Fundulus heteroclitus , in 96-h LC50 and 6-week sublethal exposures. Morphometry was used for the identification and quantification of effects with the light microscope. A 96-h LC50 of 17.2 μg 1 1 was determined. Morphometric analysis of gill tissues revealed hypertrophy of the lamellar epithelium in fish exposed to 17.2 μg 1–1. Relative diffusing capacity was significantly decreased (−41 %); ( P <0.05, ANOVA, Bonferroni t -test). At 35.6 μg 1−1, TBT exposure resulted in a significant reduction (− 40%) in the volume of the lamellar blood channels. Both of these observations occurred in fish that showed signs of acute poisoning including loss of equilibrium. In fish exposed to sublethal concentrations of 0.105–2.000 μg TBT 1−1 for 6 weeks, there were no pathological changes in the gill. There were no treatment-related changes in the surface morphology of the gills of fish from both experiments upon scanning electron microscopic examination. Although gill pathology was observed in acutely toxic exposures, it does not appear to be a major mechanism of TBT toxicity.  相似文献   

15.
Windowpane flounder, Scophthalmus aquosus Mitchill, were exposed for 60 days to 5 or 10 μg 1−1 mercury and gill samples were examined by scanning electron microscopy. The response of the gill epithelium was different at the two levels of mercury exposure. The number of chloride cell apical pits and gill filaments bearing 'cratered' epithelial cells increased at the 5-μg 1−1 level and decreased at the higher exposure level.
Focal swellings demonstrated a dose-dependent relationship, their numbers being greatest at the higher exposure level. Marked fragmentation of pavement cell microridge patterns and swelling of the respiratory epithelial cells was evident at the 10-μg 1−1 exposure level.  相似文献   

16.
Copper (Cu) is one of the most commonly reported metal pollutants in African water bodies, but there are few studies on African freshwater fish species of copper accumulation and copper toxicity. Adult O. mossambicus were exposed to 0mg l?1 (control) and 0.75mg l?1 Cu for 96h and 0 (control), 0.11, 0.29 and 0.47mg l?1 copper for 64 days. Samples of liver and gills were collected after 96h, and after 1, 32 and 64 days, respectively. There were significant differences in the mean Cu accumulation values in the liver and gills between the control and the Cu-exposed fish after the 96-h exposure. In fish exposed to 0.11 and 0.29mg l?1 Cu for 64 days there was an increase in copper level in the tissues. In fish exposed to 0.47mg l?1 Cu the concentration in the gill and liver tissue did not increase between Day 1 and Day 32. At this time, Cu accumulation in the liver was higher than for fish exposed to 0.11 and 0.29mg l?1 Cu for 64 days. Exposure to approximately 0.47mg l?1 Cu for more than 32 days induced mortality.  相似文献   

17.

1. 1.Pulsation rate as well as oxygen consumption of 10°C-acclimated golfish heart was higher in the lactate medium than in the glucose medium, but such differences was indistinct in 25°C-acclimated fish.

2. 2.Lactate and glycogen content and its consumption of the isolated heart dependent on the acclimation temperature.

3. 3.These results suggest that temperature acclimation induces change in availability of the substrates to the heart.

Author Keywords: Carassius auratus; acclimation; heart; oxygen consumption; lactate  相似文献   


18.
G. Huang    L. Wei    X. Zhang  † T. Gao   《Journal of fish biology》2008,72(10):2534-2542
The compensatory growth of juvenile brown flounder Paralichthys olivaceus (body mass c. 12 g) following different thermal exposure was investigated. Fish were exposed to one of the five temperatures: 8·5 ( T 8·5), 13·0 ( T 13·0), 17·5 ( T 17·5), 22·0 ( T 22·0) and 26·5° C ( T 26·5) for 10 days and fish grew best at 22·0° C. Then the water temperature in all treatments was equably adjusted to 22·0° C over 3 days. At the end of the following 30 days after temperature adjustment, there were no significant differences between body masses of fish in the different treatments (wet body mass at the end of the experiment ranged from 22·13 to 24·56 g). Results indicated that the juvenile P. olivaceus achieved complete compensatory growth. Analysis of the dynamics of the feeding rates and feed conversion efficiencies indicated that compensatory growth of the fish experienced low temperature ( T 8·5, T 13·5 and T 17·5) or high temperature ( T 26·5) exposure was mainly dependent on increasing feed intake (hyperphagia) and possibly by improvement in feed conversion efficiency. The moisture content was not affected by different temperature exposure significantly. The lipid and energy content of juvenile P. olivaceus in T 8·5, however, were significantly lower than other treatment. Results of the current study indicate that a short period of low or high temperature exposure may not affect annual growth, but may affect lipid and energy deposition.  相似文献   

19.
The present study was conducted to extend the understanding of the combined physiological effects of different food rations in combination with sublethal levels of copper in common carp (Cyprinus carpio). Fish acclimated to low (0.5% body weight) and high (5% body weight) food rations were exposed to 1 microM copper for a period of 28 days and kept for a further 14 days in copper free water to examine their recovery. Measurements of oxygen consumption, ammonia excretion and ammonia accumulation in plasma and muscle were done at various time intervals during the experimental period. Overall, oxygen consumption and ammonia excretion rates were significantly affected by food ration in both copper free and copper exposed fish. Additional challenges, such as copper exposure and/or exercise, significantly increased plasma and muscle ammonia in the fish fed a high food ration. Muscle ammonia levels in general responded slower (first increase after 72 h) and recovered within 2 weeks of exposure. There was a significant correlation between plasma ammonia levels, muscle ammonia levels and ammonia excretion rates. Influence of copper in terms of ammonia excretion and plasma ammonia accumulation was observed in high ration fish but low ration fish remained unaffected. This clearly indicates that ammonia metabolism was significantly influenced by copper in this group of fish showing that during unfavourable environmental conditions a high amount of food supply may turn deleterious to fish.  相似文献   

20.
The survival of Atlantic salmon smolts on exposure to constant concentrations of cyanide and ammonia, singly and together, has been measured under laboratory conditions at a concentration of 5 mgl-1 of carbon dioxide. The 24-h LC50 values of cyanide and of un-ionised ammonia, in fresh water, were 0·073 mg HCN l-1 and 0·20 mg NH3l-1 respectively at a concentration of dissolved oxygen of 10 mg l-1, and 0·024 mg HCN l-1 and 0·08 mgNH3l-1 respectively at a concentration of dissolved oxygen of 3·5 mg l-1. In 30% sea water the corresponding values were similar for cyanide but markedly higher for ammonioa. In 80% sea water the values were intermediate between those of fresh water and 30% sea water. Prior acclimation of the fish to the respective toxicant increased the resistance of the fish only slightly to cyanide, but with ammonia the 24-h LC50 was increased between 1·4 and 2-fold after acclimation for 1–3 days to between 0·2 and 0·5 of the 24-h LC50 value. Mixtures of cyanide and ammonia were between 0·6 and 1·25 times as toxic as expected, assuming simple additivity of toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号