首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutnat. A similar reoxidation is observed in the wild type in the present of low concentrations of antimycin. 2. In contrast to the wild type, inhibition of electron transport in the mutant has a much higher antimycin titre than effects on cytochromes b (viz., aerobic steady-state reduction; reduction in the presence of substrate, cyanide and oxygen; the 'red shift' and lowering of E'-o of cytochrome b-562). Moreover, the titration curve of electron transport is hyperbolic whereas the curves for the reduction are sigmoidal. The conclusion is, that in both mutant and wild type, the actions of antimycin on electron transport and cytochromes b are separable. 3. The red shift in the mutant is more extensive than in the wild type. 4. Cytochrome b-558 and cytochrome b-566 (that absorbs in mutant and wild type at 564.5 nm) do not respond simultaneously to addition of antimycin, indicating that they are two separate cytochromes. 5. The difference between the effect of antimycin on electron transport and cytochromes b reduction is also found in intact cells of the mutant. 6. A model is suggested for the wild-type respiratory chain in which (i) the cytochromes b lie, in an uncoupled system, out of the main electron-transfer chain, (ii) antimycin induces a conformation change in QH-2-cytochrome c reductase resulting in effects on cytochrome b and inhibition of electron transport, (iii) a second antimycin-binding site with low affinity to the antibiotic is present, capable of inhibiting electron transport.  相似文献   

2.
1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutant. A similar reoxidation is observed in the wild type in the presence of low concentrations of antimycin.

2. In contrast to the wild type, inhibition of electron transport in the mutant has a much higher antimycin titre than effects on cytochromes b (viz., aerobic steadystate reduction; reduction in the presence of substrate, cyanide and oxygen; the ‘red shift’ and lowering of E0 of cytochrome b-562). Moreover, the titration curve of electron transport is hyperbolic whereas the curves for the reduction are sigmoidal. The conclusion is, that in both mutant and wild type, the actions of antimycin on electron transport and cytochromes b are separable.

3. The red shift in the mutant is more extensive than in the wild type.

4. Cytochrome b-558 and cytochrome b-566 (that absorbs in mutant and wild type at 564.5 nm) do not respond simultaneously to addition of antimycin, indicating that they are two separate cytochromes.

5. The difference between the effect of antimycin on electron transport and cytochromes b reduction is also found in intact cells of the mutant.

6. A model is suggested for the wild-type respiratory chain in which (i) the cytochromes b lie, in an uncoupled system, out of the main electron-transfer chain, (ii) antimycin induces a conformation change in QH2-cytochrome c reductase resulting in effects on cytochrome b and inhibition of electron transport, (iii) a second antimycinbinding site with low affinity to the antibiotic is present, capable of inhibiting electron transport.  相似文献   


3.
Glucose-supported O2 uptake in the filarial nematode Brugia pahangi was partially inhibited by antimycin A (30-40%), with the remaining activity being sensitive to o-hydroxydiphenyl or salicylhydroxamic acid (SHAM). The production of CO2 by B. pahangi in the presence of D-glucose was stimulated by O2; the stimulation of CO2; the stimulation of CO2 production was sensitive to antimycin A. The O2 dependencies of respiration showed that the apparent O2 affinity for B. pahangi was diminished in the presence of antimycin A; O2 thresholds for inhibition of respiration were observed which showed that the alternative electron transport pathway was less sensitive to inhibition at elevated O2 concentrations. H2O2 production and its excretion could be detected in whole B. pahangi; higher rates were observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone. The effects of inhibitors on H2O2 production suggest two sites of H2O2 production, one associated with the classical antimycin A-sensitive pathway, the other with the alternative respiratory pathway. The similarity in the O2 dependencies of H2O2 production and respiration may indicate that H2O2 production is involved in O2-mediated toxicity. Succinate and malate respiring sub-mitochondrial particles of B. pahangi produced O2.- radicals at a site on the antimycin A-sensitive respiratory pathway. Inhibition of the alternative electron pathway by SHAM was unusual; sub-millimolar concentrations markedly stimulated respiration, H2O2 production and O2.- production by 30, 20 and 25%, respectively, whereas higher concentrations (greater than 2.5 mM) inhibited respiration by 75% and H2O2 and O2.- production by up to 85%.  相似文献   

4.
Usual concentrations of antimycin A, rotenone and EDTA, individally or in combination, reduced aerobic growth rate and cell yield of Candida albicans to about half its normal level and to about the levels of previously-described acetate-negative, cytochrome-complete and aa3-deficient variants which were little affected by the inhibitors. Anaerobic conditions (not affected by antimycin A) reduced growth rate and cell yield of all cultures-including that of a nonrespiring aa3, b-deficient mutant-to low, equal levels. Antimycin A but not rotenone prevented growth of the normal strain on ethanol medium. Cyanide and antimycin A blocked most of the respiration of the normal strain and cytochrome-complete variant, but did not affect that of the cytochrome aa3-deficient mutant. Rotenone and EDTA did not affect respiration of any of the cultures. SHAM blocked cyanide- and antimycin A-insensitive respiration and prolonged the lag phases of the three respiring cultures, especially in the presence of antimycin A, but alone increased oxygen-uptake rate of the cytochromecomplete cultures while curtailing that of the cytochrome aa3-deficient mutant. Resting cells, especially wild-type, grown in medium containing antimycin A exhibited lowered oxygen-uptake rate, which was increased upon the addition of cyanide or antimycin A. Antimycin A stimulated, but cyanide inhibited, respiration of cytochrome-complete cultures grown in the presence of rotenone but did not affect that of the cytochrome aa3-deficient mutant. SHAM inhibited respiration of all antimycin A- or rotenone-grown cultures. The high rate of respiration of C. albicans in the presence of inhibitors for three sites of electron transport in the conventional oxidative pathway, the inhibition of this respiration by SHAM and its loss by the absence of cytochrome b, indicate an alternate oxidative pathway in this organism which crosses the conventional one at cytochrome b.This work was supported by Public Health Service Graduate Dental Training Grant DE 00144 and the Graduate School and the Department of Microbiology, Southern Illinois University.  相似文献   

5.
1. Mitochondria isolated from cultures of Acanthamoeba castellanii exhibit respiratory control and oxidize alpha-oxoglutarate, succinate and NADH with ADP:O ratios of about 2.4, 1.4 and 1.25 respectively. 2. Mitochondria from cultures of which the respiration was stimulated up to 50% by 1mm-cyanide (type-A mitochondria) and from cyanide-sensitive cultures (type-B mitochondria) had similar respiratory-control ratios and ADP:O ratios. 3. State-3 rates of respiration were generally more cyanide-sensitive than State-4 rates, and the respiration of type-A mitochondria was more cyanide-resistant than that of type-B mitochondria. 4. Salicylhydroxamic acid alone had little effect on respiratory activities of either type of mitochondria, but when added together with cyanide, irrespective of the order of addition, inhibition was almost complete. 5. Oxidation of externally added NADH by type-A mitochondria was mainly via an oxidase with a low affinity for oxygen (K(m)[unk]15mum), which was largely cyanide-sensitive and partially antimycin A-sensitive; this electron-transport pathway was inhibited by ADP. 6. Cyanide-insensitive but salicylhydroxamic acid-sensitive respiration was stimulated by AMP and ADP, and by ATP after incubation in the presence of MgCl(2). 7. Addition of rotenone to mitochondria oxidizing alpha-oxoglutarate lowered the ADP:O ratios by about one-third and rendered inhibition by cyanide more complete. 8. The results suggest that mitochondria of A. castellanii possess branched pathways of electron transport which terminate in three separate oxidases; the proportions of electron fluxes via these pathways vary at different stages of growth.  相似文献   

6.
Rhodopseudomonas sphaeroides grown under nonrigorous anaerobic conditions in the light developed components of a branched respiratory electron transfer chain, and a photosynthetic electron transfer chain. Both respiratory pathways were sensitive to rotenone and high concentrations of cyanide, but oxygen uptake was only partially inhibited by the addition of low concentrations of cyanide or antimycin A. When incubated anaerobically in the dark, R. sphaeroides responded positively to an oxygen gradient in the absence of rotenone. In the presence of rotenone, aerotaxis only occurred when the antimycin A-sensitive branch of the pathway was functioning, although both branches still reduced oxygen. Although there was electron movement along the respiratory chain, aerotaxis only occurred in response to a change in proton motive force. When incubated anaerobically in the light, the movement of R. sphaeroides up a light gradient depended on photosynthetic electron transport. When incubated aerobically, high-intensity actinic illumination inhibited oxygen uptake and aerotaxis. In a low-intensity light gradient the phototactic response was inhibited by oxygen. These results are discussed in relation to the interaction of the electron transfer chains and their roles in controlling tactic responses in R. sphaeroides.  相似文献   

7.
The effect of a series of respiratory inhibitors on the oxidation of NADH in state 4 and state 3 conditions was studied with corn shoot mitochondria. Comparisons were made using malate and succinate as substrates. The inhibitors, rotenone, amytal, antimycin A and cyanide, inhibited oxidation of NADH in state 3 but rotenone and amytal did not inhibit oxidation in state 4. The inhibition by antimycin A was partially overcome by the presence of cytochrome c. The results indicate the presence of alternative pathways available for NADH oxidation depending on the metabolic condition of the mitochondria. Under state 4 conditions, NADH oxidation bypasses the amytal and rotenone sensitive sites but under state 3 conditions a component of the NADH respiration appears to be oxidized by an internal pathway which is sensitive to these inhibitors. Still a third pathway for NADH oxidation is dependent on the addition of cytochrome c and is insensitive to antimycin A. Succinate oxidation was sensitive to cyanide and antimycin A under both state 4 and state 3 conditions as well as amytal and rotenone under state 3 conditions but was not inhibited by amytal and rotenone under state 4 conditions. Malate oxidation was inhibited by cyanide, rotenone and amytal under both state 4 and state 3 conditions. Antimycin A inhibited state 3 but did not appreciably alter state 4 rates of malate oxidation. With all substrates tested inhibition by antimycin A was greatly facilitated by preswelling the mitochondria for 10 min. This was interpreted to indicate that swelling increases the accessibility of antimycin A to the site of inhibition.  相似文献   

8.
Oxygen uptake by the carotenoid-containing yeast, Rhodotorula glutinis was not affected by concentrations of cyanide and antimycin A which completely inhibit the respiration of Saccharomyces cerevisiae. The tolerance of R. glutinis to these inhibitors was somewhat dependent on the age of the cultures. Reduced minus aerated difference spectra of cells revealed spectral changes presumably due to cytochromes and carotenoids. The kinetics of these spectral changes induced by oxygen were followed. Carotenoid deficient cells were prepared by growth in the presence of diphenylamine. Difference spectra of these cells revealed the presence of flavoprotein, and a, b, and c type cytochromes. Growth of R. glutinis was completely inhibited by concentrations of cyanide which did not affect respiration. Oxidation of reduced nicotinamide adenine dinucleotide by sub-cellular fractions was sensitive to cyanide and antimycin A. Although respiration of intact cells is tolerant to these inhibitors, studies with cell-free extracts suggest the presence of a cyanide and antimycin A-sensitive, cytochrome-linked, respiratory chain.  相似文献   

9.
Candida parapsilosis mitochondria contain three respiratory chains: the classical respiratory chain (CRC), a secondary parallel chain (PAR) and an “alternative” oxidative pathway (AOX). We report here the existence of similar pathways in C. albicans. To observe the capacity of each pathway to sustain yeast growth, C. albicans cells were cultured in the presence of inhibitors of these pathways. Antimycin A and KCN totally abrogated yeast growth, while rotenone did not prevent proliferation. Furthermore, rotenone promoted only partial respiratory inhibition. Lower concentrations of KCN that promote partial inhibition of respiration did not inhibit yeast growth, while partial inhibition of respiration with antimycin A did. Similarly, AOX inhibitor BHAM decreased O2 consumption slightly but completely stunted cell growth. Reactive oxygen species production and oxidized glutathione levels were enhanced in cells treated with antimycin A or BHAM, but not rotenone or KCN. These findings suggest that oxidative stress prevents C. albicans growth.  相似文献   

10.
1. Proteus mirabilis formed fumarate reductase under anaerobic growth conditions. The formation of this reductase was repressed under conditions of growth during which electron transport to oxygen or to nitrate is possible. In two of three tested chlorate-resistant mutant strains of the wild type, fumarate reductase appeared to be affected. 2. Cytoplasmic membrane suspensions isolated from anaerobically grown P. mirabilis oxidized formate and NADH with oxygen and with fumarate, too. 3. Spectral investigation of the cytoplasmic membrane preparation revealed the presence of (probably at least two types of) cytochrome b, cytochrome a1 and cytochrome d. Cytochrome b was reduced by NADH as well as by formate to approximately 80%. 4. 2-n-Heptyl-4-hydroxyquinilone-N-oxide and antimycin A inhibited oxidation of both formate and NADH by oxygen and fumarate. Both inhibitors increased the level of the formate/oxygen steady state and the formate/fumarate steady state. 5. The site of inhibition of the respiratory activity by both HQNO and antimycin A was located at the oxidation side of cytochrome b. 6. The effect of ultraviolet-irradiation of cytoplasmic membrane suspensions on oxidation/reduction phenomena suggested that the role of menaquinone is more exclusive in the formate/fumarate pathway than in the electron transport route to oxygen. 7. Finally, the conclusion has been drawn that the preferential route for electron transport from formate and from NADH to fumarate (and to oxygen) includes cytochrome b as a directly involved carrier. A hypothetical scheme for the electron transport in anaerobically grown P. mirabilis is presented.  相似文献   

11.
An active respiratory chain system was demonstrated in sonically treated mycelium of Streptomyces antibioticus, the producer of antimycin A. The respiratory electron transfer from substrate to oxygen proceeded successively through flavoprotein(s), b-, c-, and a-type cytochromes, and terminated with the cyanide-sensitive cytochrome oxidase. The cytochrome composition of the culture was not affected by the age of the mycelium, the intensity of antimycin A production, or differences in the media. Slater factor, coenzyme Q, and vitamin K were not interposed as hydrogen carriers in the respiratory chain between flavoproteins and cytochromes. The oxidation of reduced nicotinamide adenine dinucleotide and succinate was unaffected by antimycin A. Evidence is presented in support of the absence of the antimycin A-sensitive site from the electron transport system of S. antibioticus.  相似文献   

12.
The respiratory metabolism of Schizosaccharomyces pombe 972h(-), a fission, haplontic, "petite negative" yeast, was studied. Glucose and glycerol are good growth substrates and are oxidized under appropriate conditions. l-Lactate, ethanol, malate, and succinate are oxidized but are poor substrates for growth. d-Lactate and pyruvate are neither oxidized nor used for growth. Limited growth was observed under anaerobic conditions. The addition of 0.3% KNO(3) to a rich medium relieves the oxygen requirement. A continuous increase of cell respiration during growth on repressive concentration of glucose was observed, suggesting the presence of glucose repression of respiration. Reduced nicotinamide adenine dinucleotide (NADH), succinate, alpha-glycerophosphate, and ascorbate plus tetramethyl-p-phenylenediamine are oxidized by a mitochondrial fraction. NADH and succinate oxidations are inhibited by antimycin A and NaCN but not by rotenone, suggesting the absence of the phosphorylation site I and the presence of sites II and III. The effects of several mitochondrial inhibitors on growth and respiration indicate that the requirement of an oxidant for growth is related neither to the functioning of the respiratory electron transport chain nor to the formation of respiratory energy. The previously suggested correlations between the nonviability of vegetative "petites" mutants, the absence of repression of respiration by glucose, and the incapacity to grow under anaerobic conditions are thus not strictly valid for S. pombe.  相似文献   

13.
Bloodstream forms of Trypanosoma cruzi had a substantial increase in respiration in the presence of acetate. Oxidation of acetate took place via the tricarboxylic acid cycle and involved an antimycin A-sensitive respiratory pathway. Oxygen uptake in the presence of acetate was a sensitive to antimycin A inhibition as was CO2 production. There was a 6--7% residual O2 uptake which was not inhibited by high antimycin concentrations. Human anti-T. cruzi sera had no effect on oxygen uptake.  相似文献   

14.
Serum from patients with Reye's Syndrome stimulated state 4 respiration in isolated rat liver mitochondria. Inhibitors of specific mitochondrial functions were tested as potential antagonists of the stimulatory effect of RS serum. Oligomycin, ruthenium red, rotenone and antimycin A were all ineffective in preventing the increase in state 4 respiration, but KCN completely abolished all respiratory activity in the presence of RS serum. We conclude that the putative serum factor stimulates respiration by directly or indirectly interacting with the electron transport chain at a point beyond site II.  相似文献   

15.
In eggs of the echiuroid Urechis unicinctus the respiration rate, which is not altered by fertilization, is inhibited by rotenone, antimycin A and cyanide. The respiration in echiuroid eggs is probably mediated by the mitochondrial respiratory chain. In fertilized eggs, the respiration was inhibited by oligomycin and stimulated by the uncouplers of oxidative phosphorylation 2,4-dinitrophenol and carbonylcyanide p-trifluoromethoxyphenylhydrazone, whereas respiration in unfertilized eggs was insensitive to these compounds. Insemination increased the respiratory rate in eggs in the presence of uncouplers and reduced it in the presence of oligomycin. These findings suggest that the capacity of electron transport in mitochondira is elevated by fertilization but becomes latent on fertilization-induced coupling of respiration with oxidative phosphorylation. Strong stimulation of the respiration in unfertilized eggs was induced by dichlorophenol indophenol, phenazine methosulfate and tetramethyl p-phenylenediamine, suggesting possible sites at which electron transport is regulated in unfertilized eggs. The resulting stimulation of respiration in unfertilized eggs was insensitive to uncouplers and oligomycin, but became sensitive to them after fertilization simultaneously with considerable decrease in its rate. Fertilization-induced coupling of the respiration seemed to reduce the respiratory rate enhanced artificially by these redox compounds.  相似文献   

16.
1. The cyanide-insensitive respiration in Paramecium tetraurelia was found to be located in mitochondria. 2. Sensitivity of the mitochondrial respiration to cyanide depended on growth conditions. Under standard conditions of growth, 15--20% of respiration was insensitive to 1 mM cyanide. Full resistance to 1 mM cyanide was observed by growing cells in the presence of erythromycin (100--400 microgram/ml) 0.2 mM cyanide. The mitochondrial respiration of the mutant Cl1 harvested during the exponential phase of growth was largely insensitive to cyanide (more than 80%). 3. Pyruvate was oxidized at the same rate by wild type mitochondria and mitochondria of the mutant Cl1. In contrast, succinate oxidation was 2--3 times faster in mitochondria of the mutant Cl1 than in wild type mitochondria. 4. The cyanide-insensitive respiration was inhibited by 1 mM salicylhydroxamic acid to nearly 100%. Other efficient respiratory inhibitors included amytal and heptylhydroxyquinoline. Antimycin was not inhibitory even at concentrations as high as 5 microgram/mg protein, a finding consistent with the lack of antimycin binding sites.  相似文献   

17.
1. A mutant (ANT 8) of Schizosaccharomyces pombe which shows resistance to antimycin both in vivo and in vitro is characterized biochemically and genetically. 2. In crosses of ANT 8 with auxotrophic strains, resistance to antimycin segregates 2:2 indicating that resistance is conferred by a single nuclear gene. Diploids heterozygous for the resistance gene, however, show segregation of the resistance and sensitivity during mitosis. Possible reasons for this segregation are discussed. 3. Compared with the wild type, the NADH oxidase of ANT 8 requires 13 times as much antimycin for 95% inhibition. After addition of ubiquinone-3, electron transport which is less sensitive to antimycin is found only in the mutant. 4. The resistance of the mutant ANT 8 si due to the much weaker binding of antimycin to mitochondria. As in the wild type, two antimycin binding sites can be separated by binding studies. From the inhibition curves it is evident that binding of antimycin to oxidized mitochondrial particles does not correspond with its inhibitory effect on the partly reduced enzyme in kinetic studies. 5. The peak of the b-cytochrome absorbing at 560.2 nm at 77 degrees K in the wild type is shifted to 561 nm in the mutant. 6. A special preparation method for mutant mitochondrial particles is described, yielding highly active enzymes and CO-insensitive cytochromes. 7. The results are discussed with reference to the components in our model of the respiratory chain, which may be responsible for this type of resistance.  相似文献   

18.
After a general review of the proposed mechanisms and physiological roles of the alternative respiratory pathways found in various organisms, the studies are focussed on the amylolytic yeast Schwaniomyces castellii. In addition to the cytochrome chain, the wild type presents two alternative pathways insensitive to antimycin A. One is salicylhydroxamic acid (SHAM)-sensitive and azide-insensitive; the other is SHAM-insensitive and sensitive to high azide concentration. Conditions for mutagenesis and screening are described, which allow isolation of mutants deficient in cytochromes a+a3 and/or b in this yeast previously classified as petite negative. The relative proportions of the alternative respiratory pathways are compared in the wild type and mutant strains following inhibition by SHAM and azide at optimal concentration as determined by iso-inhibition curves. The growth of the cytochrome deficient mutants on citrate, a non-fermentable carbon source, and the ability of the wild type to grow on citrate+antimycin A, after a lag of about 10 h, indicate an involvement of the alternative pathway(s) in energy production. Rotenone sensitivity of respiration and ATP level confirm the presence of a functional phosphorylation site 1. The role of each alternative respiratory pathway in energy production is discussed.  相似文献   

19.
Various respiratory electron transport activities of Rhodopseudomonas capsulata were studied in membrane fragments prepared from photosynthetically grown cells of a parental strain and two terminal oxidase-defective mutant strains. The NADH and succinate oxidase activities of the mutant having a functional N,N,N1,N1-tetramethyl-p-phenylenediamine oxidase, M6, were consideraly more sensitive to inhibition by either antimycin A or cyanide than the corresponding activities of the mutant lacking a functional N,N,N1,N1-tetramethyl-p-phenylenediamine oxidase, M7. The parental strain, Z-1, but not the mutants, showed biphasic inhibitory responses of NADH and succinate oxidase activities with either antimycin A or cyanide. In certain reactions no differences in inhibitor susceptibility were found among the strains tested, implying that the pathways involved were unaffected in the mutants. In this category were the actions of rotenone on NADH oxidase, antimycin A on cytochrome c reductase and, in M6 and Z-1, cyanide on N,N,N'N'-tetramethyl-p-phenylenediamine oxidase. These results suggest that the respiratory chain of the parental strain branches at the ubiquinone-cytochrome b region into two pathways, each branch goes to a distinct terminal oxidase, and either may be blocked independently by genetic mutation.  相似文献   

20.
Farge G  Touraille S  Debise R  Alziari S 《Biochimie》2002,84(12):1189-1197
Analysis of a mutant strain of Drosophila subobscura revealed that most (80%) mitochondrial genomes have undergone a large scale deletion (5 kb) in the coding region. Compared with the wild-type strain, complex I and III activities are, respectively, reduced by 50% and 30% in the mutant. However, the ATP synthesis capacities remain unchanged. In order to elucidate how the ATP synthesis is maintained at a normal level, despite a significant decrease in complex I and III activities, we progressively inhibited respiratory chain complex activities, respiration rate and ATP synthesis. Complex I, III and IV activities were inhibited by rotenone, antimycin and KCN, respectively. Threshold curves were thus determined for each complex. Our results demonstrated that in the mutant strain, both mitochondrial respiration and ATP synthesis had decreased when complex I activity was inhibited by more than 20%, whereas 70% inhibition is required to induce similar changes in the wild-type. The complex I inhibition pattern of the wild-type was restored by a backcross (mutant female/wild-type male). The complex III activity threshold is below 20% in both strains, and we observed some difference in antimycin sensitivity, suggesting a modification of the complex enzymatic properties in the mutant. In contrast, threshold values of 70% were measured for complex IV inhibition. Our data suggest that the difference in the complex I threshold curves between the wild-type and mutant strains could partially account for the absence of pathological phenotype in the mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号