首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A heat stable microtubule-associated protein of Mr 190,000 (190-kDa MAP) has been purified from bovine adrenal cortex (Murofushi, H., Kotani, S., Aizawa, H., Hisanaga, S., Hirokawa, N., and Sakai, H. (1986) J. Cell Biol. 103, 1911-1919). Limited chymotryptic digestion of 190-kDa MAP produced a fragment of Mr 27,000 (27-kDa fragment), which bound to microtubules reconstituted in the presence of taxol. This fragment was purified with the aid of cosedimentation with microtubules. The purified 27-kDa fragment showed an ability to stimulate tubulin polymerization in the absence of taxol. Electron microscopic observation of microtubules reconstituted from purified 27-kDa fragment and tubulin revealed that the microtubules were in the form of thick bundles and that lateral projections which can be seen in microtubules reconstituted from intact 190-kDa MAP and tubulin were not observed. These results indicate that 27-kDa fragment includes or is a part of microtubule-binding domain of 190-kDa MAP and that this fragment is active in stimulating microtubule assembly. Amino acid analysis revealed that the 27-kDa fragment was rich in lysine, proline, and alanine, the sum of these three being about 45% of the total amino acids and that the contents of methionine, tyrosine, phenylalanine, and histidine were very low. These data suggest that the microtubule binding domain of the 190-kDa MAP comprises an unique structure.  相似文献   

2.
Wang Z  Sheetz MP 《Biophysical journal》2000,78(4):1955-1964
In motor movement on microtubules, the anionic C-terminal of tubulin has been implicated as a significant factor. Our digital analyses of movements of cytoplasmic dynein- and kinesin-coated beads on microtubules have revealed dramatic changes when the C-terminal region (2-4-kDa fragment) of tubulin was cleaved by limited subtilisin digestion of assembled microtubules. For both motors, bead binding to microtubules was decreased threefold, bead run length was decreased over fourfold, and there was a dramatic 20-fold decrease in diffusional movements of cytoplasmic dynein beads on microtubules (even with low motor concentrations where the level of bead motile activity was linear with motor concentration). The velocity of active bead movements on microtubules was unchanged for cytoplasmic dynein and slightly decreased for kinesin. There was also a decrease in the frequency of bead movements without a change in velocity when the ionic strength was raised. However, with high ionic strength there was not a decrease in run length or any selective inhibition of the diffusional movement. The C-terminal region of tubulin increased motor run length (processivity) by inhibiting "detachment" but without affecting velocity. Because the major motor binding sites of microtubules are not on the C-terminal tail of tubulin (), we suggest that the changes are the result of the compromise of a weakly attached state that is the lowest affinity step in both motors' ATPase cycles and is not rate limiting.  相似文献   

3.
The use of a panel of monoclonal antibodies (mAbs) directed against different determinants of microtubule-associated protein 2 (MAP2) enabled us to identify two distinct high-molecular-mass MAP2 species (270 and 250 kDa) and a substantial amount of MAP2c (70 kDa) in human neuroblastoma cells. The 250-kDa MAP2 species appears to be confined to the human neuroblastoma cells and was not observed in microtubules (MTs) from bovine and rat brain, mouse neuroblastoma, or MTs from human cerebellum. A new overlay method was developed, which demonstrates binding of tubulin to human neuroblastoma high-molecular-mass MAP2 by exposing nitrocellulose-bound MT proteins under polymerization conditions to tubulin. Bound tubulin was detected with a mAb directed against beta-tubulin. The binding of tubulin to MAP2 could be abolished by a peptide homologous to positions 426-445 of the C-terminal region of beta-tubulin. Immunological cross-reactivity with several mAbs directed against bovine brain MAP2, taxol-promoted coassembly into MTs, and immunocytochemical visualization within cells were further criteria utilized to characterize these proteins as true MAPs. Indirect immunofluorescence with anti-MAP2 and anti-beta-tubulin mAbs demonstrated that there is a change in the spatial organization of MTs during induced cell differentiation, as indicated by the appearance of MT bundles and the redistribution of MAP2.  相似文献   

4.
Previously we reported that chymotryptic fragments of bovine adrenal 190-kDa microtubule-associated proteins (27-kDa fragment) and bovine brain tau (14-kDa fragment) contained microtubule-binding domain (Aizawa, H., Murofushi, H., Kotani, Hisanaga, S., Hirokawa, N., and Sakai, H. (1987) J. Biol. Chem. 262, 3782-3787; Aizawa, H., Kawasaki, H., Murofushi, H., Kotani, S., Suzuki, K., and Sakai, H. (1988) J. Biol. Chem. 263, 7703-7707). In order to study the structure of microtubule-binding domain of the two microtubule-associated proteins, we analyzed the amino acid sequence of the 27-kDa fragment and compared the sequence with that of the 14-kDa fragment. This revealed that 190-kDa microtubule-associated protein and tau contained at least one common sequence of 20 amino acid residues in their microtubule-binding domains. A synthetic polypeptide corresponding to the common sequence (Lys-Asn-Val-Arg-Ser-Lys-Val-Gly-Ser-Thr-Glu-Asn-Ile-Lys- His-Gln-Pro-Gly-Gly-Gly-Arg-Ala-Lys) was bound to microtubules competitively with the 190-kDa MAP. The apparent dissociation constant (KD) for the binding of the polypeptide to microtubules was estimated to be 1.8 x 10(-4) M, and the maximum binding reached 1.2 mol of the synthetic polypeptide/mol of tubulin dimer. This synthetic polypeptide increased the rate and extent of tubulin polymerization and decreased the critical concentration of tubulin for polymerization. The polypeptide-induced tubulin polymers were morphologically normal microtubules and were disassembled by cold treatment. The common sequence (termed assembly-promoting sequence) was thus identified as the active site of 190-kDa microtubule-associated protein and tau for the promotion of microtubule assembly. The reconstitution system of microtubules with this synthetic polypeptide with assembly-promoting sequence may be useful to elucidate detailed molecular mechanism of the promotion of microtubule assembly by microtubule-associated proteins.  相似文献   

5.
Abstract: Microtubule-associated proteins (MAPs) play major regulatory roles in the organization and integrity of the cytoskeletal network. Our main interest in this study was the identification and the analysis of structural and functional aspects of Drosophila melanogaster MAPs. A novel MAP with a relative molecular mass of 85 kDa from Drosophila larvae was found associated with taxol-polymerized microtubules. In addition, this protein bound to mammalian tubulin in an overlay assay and coassembled with purified bovine brain tubulin in microtubule sedimentation experiments. The estimated stoichiometry of 85-kDa protein versus tubulin in the polymers was 1:5.3 ± 0.2 mol/mol. It was shown that the 85-kDa protein bound specifically to an affinity column of Sepharose-βII-(422–434) tubulin peptide, which contains the sequence of the MAP binding domain on βII-tubulin. Affinity-purified 85-kDa protein enhanced microtubule assembly in a concentration-dependent manner. This effect was significantly decreased by the presence of the βII-(422–434) peptide in the assembly assays, thus confirming the specificity of the 85-kDa protein interaction with the C-terminal domain on tubulin. Furthermore, this protein also exhibited a strong affinity for calmodulin, based on affinity chromatographic assays. Monoclonal and polyclonal anti-τ antibodies, including sequence-specific probes that recognize repeated microtubule-binding motifs on τ, MAP-2, and MAP-4 and specific N-terminal sequences of τ, cross-reacted with the 85-kDa protein from Drosophila larvae. These results suggest that τ and Drosophila 85-kDa protein share common functional and structural epitopes. We have named this protein as DMAP-85 for Drosophila MAP. The finding on a Drosophila protein with functional homology and structural similarities to mammalian τ opens new perspectives to understand the cellular roles of MAPs.  相似文献   

6.
A microtubule-associated protein (MAP) with a molecular mass of 72-kDa that was purified from porcine brain by using its property of heat stability in a low pH buffer was characterized. Low-angle rotary shadowing revealed that the 72-kDa protein was a rodlike protein approximately 55-75 nm long. The 72-kDa protein bound to microtubules polymerized from phosphocellulose column-purified tubulin (PC-tubulin) with taxol and promoted the polymerization of PC-tubulin in the absence of taxol. Microtubules polymerized by the 72-kDa protein showed a tendency to form bundles of several microtubules. Quick-freeze, deep-etch electron microscopy revealed that the 72-kDa protein formed short crossbridges between microtubules. We performed peptide mapping to analyze the relationship of the 72-kDa protein to other heat-stable MAPs, and the results showed some resemblance of the 72-kDa protein to MAP2. Cross-reactivity with a monoclonal anti-MAP2 antibody further suggested that the 72-kDa protein and MAP2 are immunologically related. To study the relationship between the 72-kDa protein and MAP2C, a smaller molecular form of MAP2 identified in juvenile rat brain, we prepared the 72-kDa protein from rat brain by the same method as that used for porcine brain. The fact that the 72-kDa protein from juvenile rat brain was also stained with our monoclonal anti-MAP2 antibody also suggested that the 72-kDa protein is an MAP2C homologue of the porcine brain.  相似文献   

7.
The high-molecular-weight dendritic cytoskeletal protein known as microtubule-associated protein (MAP)-2 displays the capacity to stimulate tubulin polymerization and to associate with microtubules. Serine proteases cleave MAP-2 into a C-terminal M(r) 28,000-35,000 microtubule-binding fragment and a larger N-terminal M(r) 240,000 projection-arm region. We now show that human immunodeficiency virus (HIV) proteinase also progressively degrades purified MAP-2 in vitro. This proteolysis reaction is characterized by transient accumulation of at least six intermediates, and most abundant of these is an M(r) 72,000 species that retains the ability to associate with taxol-stabilized microtubules. Treatment of this M(r) 72,000 species with thrombin releases the same M(r) 28,000 component as that derived from thrombin action on intact high-molecular-weight MAP-2, indicating that the viral aspartoproteinase action preferentially occurs further toward the N-terminus. The association of the M(r) 72,000 component with microtubules can be disrupted by the presence of a 21-amino acid peptide analogue of the second repeated sequence in the MAP-2 microtubule-binding region. We also studied HIV proteinase action on MAP-2 in the presence of tubulin and other MAPs that recycle with tubulin, and contrary to other published studies we found no effect of such treatment on microtubule self-assembly behavior. Cleavage of isolated MAP-2 by the HIV enzyme at high salt concentrations, followed by desalting and addition of tubulin, also resulted in microtubule assembly, albeit with slightly reduced efficiency.  相似文献   

8.
Calponin is a basic smooth muscle protein capable of binding to actin, calmodulin, tropomyosin, and phospholipids. We have found that the basic calponin interacted with brain tubulin under polymerized and unpolymerized conditions in vitro [Fujii, T., Hiromori, T., Hamamoto, M., and Suzuki, T. (1997) J. Biochem. 122, 344-351]. We examined the calponin-binding site on the tubulin molecule by sedimentation, limited digestion, chemical-cross linking, immunoblotting, and delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometric (DE MALDI-TOF) analyses. Calponin interacts with both the alpha and beta tubulins and only slightly with the tyrosinated and acetylated form of alpha tubulin. The binding of calponin to microtubules was blocked by adding poly(L-aspartic acid) (PLAA) or MAP2. After digestion of microtubule proteins with subtilisin, the amount of calponin binding to alphabetas microtubules was reduced compared to native microtubules, but no further reduction was observed in the case of alphasbetas microtubules. The chemical cross-linked products of calponin and synthesized peptides (KDYEEVGVDSVEGE; alpha-KE) derived from the C-terminal region of alpha tubulin and (YQQYQDATADEQG; beta-YG) and (GEFEEEGEEDEA; beta-GA) from that of beta tubulin were detected by mass spectrometry. One kind of calponin-peptide complex was formed in the presence of alpha-KE or beta-YG, while five complexes (calponin:peptide = 1:1-5) were generated in the presence of beta-GA. Peptides alpha-KE and beta-GA inhibited the binding of calponin to tubulin produced by EDC in a concentration-dependent manner. These findings suggest that basic calponin interacts with both tubulin subunits and that their C-terminal regions, which also contain the binding sites of MAP2, tau, and kinesin, may be involved in calponin-binding.  相似文献   

9.
From cloned DNA, neuraxin has been identified as a tubulin binding protein of predicted molecular weight of 94 kDa. The deduced sequence of the rat protein exhibits high homology to the C-terminal region of mouse microtubule-associated protein 5 (MAP5). Here, we show that different neuraxin antibodies recognize MAP5, but fail to detect a protein of 94 kDa, in subcellular and microtubular fractions of the rat central nervous system. Furthermore, tubulin binding by neuraxin was found to be dependent on taxol. These data are consistent with neuraxin corresponding to a C-terminal fragment of MAP5 that contains a low-affinity tubulin binding site.  相似文献   

10.
A heat-stable microtubule-associated protein (MAP) with relative molecular mass 250 000, termed 250-kDa MAP, was purified from bovine adrenal cortex. It is classified as a MAP subspecies distinct from MAP1, MAP2, tau, and MAP4, as judged from its electrophoretic mobility, heat stability and immunoreactivity. Purified 250-kDa MAP was able to bind to taxol-stabilized microtubules, although it lacked the ability to polymerize purified tubulin into microtubules. Western-blot analysis showed that this MAP was expressed ubiquitously in mammalian tissues. Immunofluorescence microscopy revealed that polyclonal antibodies raised against 250-kDa MAP stained many punctate structures in the cytoplasm of cultured cells. Blurry cytosolic staining was also observed. Judging from the result of nocodazole treatment, the punctate structures were associated with the microtubule network throughout the cytoplasm, while cytosolic 250-kDa MAP colocalized with free tubulin. Under electron microscopy, 250-kDa MAP has the appearance of a hollow sphere of about 12 nm diameter.  相似文献   

11.
The respective contributions of electrostatic interaction and specific sequence recognition in the binding of microtubule-associated proteins (MAPs) to microtubules have been studied, using as models yeast valyl- and lysyl-tRNA synthetases (VRS, KRS) that carry an exposed basic N-terminal domain, and a synthetic peptide reproducing the sequence 218-235 on tau protein, known to be part of the microtubule-binding site of MAPs. VRS and KRS bind to microtubules with a KD in the 10(-6) M range, and tau 218-235 binds with a KD in the 10(-4) M range. Binding of KRS and tau 218-235 is accompanied by stabilization and bundling of microtubules, without the intervention of an extraneous bundling protein. tau 218-235 binds to microtubules with a stoichiometry of 2 mol/mol of assembled tubulin dimer in agreement with the proposed binding sequences alpha[430-441] and beta[422-434]. Binding stoichiometries of 2/alpha beta S tubulin and 1/alpha S beta S tubulin were observed following partial or complete removal of the tubulin C-terminal regions by subtilisin, which localizes the site of subtilisin cleavage upstream residue alpha-441 and downstream residue beta-434. Quantitative measurements show that binding of MAPs, KRS, VRS, and tau 218-235 is weakened but not abolished following subtilisin digestion of the C-terminus of tubulin, indicating that the binding site of MAPs is not restricted to the extreme C-terminus of tubulin.  相似文献   

12.
The signal for retention in the endoplasmic reticulum of the E3/19K protein of adenovirus type 2 is located within the carboxyl-terminal cytoplasmic extension. A synthetic peptide corresponding to this sequence showed affinity for beta-tubulin, could promote tubulin polymerization in vitro, and bound to taxol-polymerized microtubules. When compared with the microtubule binding sequences from two microtubule-associated proteins (MAPs; MAP2 and tau), we found similarities suggesting that the cytoplasmic tail might bind to tubulin/microtubules in a MAPs-like fashion. A synthetic peptide corresponding to the cytoplasmic tail of an E3/19K deletion mutant not retained in the endoplasmic reticulum was also tested. It had the same net charge but did not promote tubulin polymerization in vitro nor did it show measurable affinity for tubulin or microtubules. This indicates that binding to microtubules is important for retention of the E3/19K protein in the endoplasmic reticulum.  相似文献   

13.
The influence of phosphorylation on the binding of microtubule-associated protein 2 (MAP2) to cellular microtubules was studied by microinjecting MAP2 in various phosphorylation states into rat-1 fibroblasts, which lack endogenous MAP2. Conventionally prepared brain MAP2, containing 10 mol of endogenous phosphate per mol (MAP2-P10), was completely bound to cellular microtubules within 2-3 min after injection. MAP2 prepared in the presence of phosphatase inhibitors, containing 25 mol/mol of phosphate (MAP2-P25), also bound completely. However, MAP2 whose phosphate content had been reduced to 2 mol phosphate per mol by treatment with alkaline phosphatase in vitro (MAP2-P2) did not initially bind to microtubules, suggesting that phosphorylation of certain sites in MAP2 is essential for binding to microtubules. MAP2-P10 was further phosphorylated in vitro via an endogenously bound protein kinase activity, adding 12 more phosphates, giving a total of 22 mol/mol. This preparation (MAP2-P10+12) also did not bind to microtubules. Assay of the binding of these preparations to taxol-stabilized tubulin polymers in vitro confirmed that their binding to tubulin depended on the state of phosphorylation, but the results obtained in microinjection experiments differed in some cases from in vitro binding. The results suggest that the site of phosphate incorporation rather than the amount is the critical factor in determining microtubule binding activity of MAP2. Furthermore, the interaction of MAP2 with cellular microtubules may be influenced by additional factors that are not evident in vitro.  相似文献   

14.
Monoclonal antibodies against microtubule-associated protein 2 (MAP2) were prepared and their specificity was verified by visualization of the antigens using the antibody overlay technique and by radioimmunoassay. MAP2 was cleaved by alpha-chymotrypsin to generate a series of high-molecular-mass fragments ranging between 270 and 140 kDa. The precursor-product relationship of these fragments was suggested from the rate of their appearance and from the analysis of the tryptic peptide map of each fragment. A group of monoclonal antibodies was found to react predominantly with the intact 270-kDa MAP2 molecule and a fragment having a mass of 240 kDa and to some extent with a 215-kDa fragment. Another group of monoclonal antibodies reacted with an antigenic determinant which was located on the 270-kDa molecule as well as on fragments as small as 140 kDa. None of the two groups of monoclonal antibodies reacted with the microtubule-binding domain of MAP2. These results suggest that one group of antibodies reacts with sites located at or dependent upon a terminal 60-kDa domain(s) distal to the microtubule-binding site of MAP2. The second group of antibodies, which can still bind to smaller proteolytic products, appear to be associated with the central region of the MAP2 molecule. Indirect immunofluorescence experiments with the antibody preparations indicated that at least some of the antigenic determinants are exposed when MAP2 is associated with microtubules in the cell body and neurite outgrowths of differentiated rat brain neuroblastoma B104 cells.  相似文献   

15.
Tau is a neuronal microtubule-associated protein that plays a central role in many cellular processes, both physiological and pathological, such as axons stabilization and Alzheimer's disease. Despite extensive studies, very little is known about the detailed molecular basis of tau binding to microtubules. We used the four-repeat recombinant htau40 and tubulin dimers to show for the first time that tau is able to induce both microtubule and ring formation from 6S alphabeta tubulin in phosphate buffer without added magnesium (nonassembly conditions). The amount of microtubules or rings formed was protein concentration-, temperature-, and nucleotide-dependent. By means of biophysical approaches, we showed that tau binds to tubulin without global-folding change, detectable by circular dichroism. We also demonstrated that the tau-tubulin interaction follows a ligand-mediated elongation process, with two tau-binding site per tubulin dimer. Moreover, using a tubulin recombinant alpha-tubulin C-terminal fragment (404-451) and a beta-tubulin C-terminal fragment (394-445), we demonstrated the involvement of both of these tubulin regions in tau binding. From this model system, we gain new insight into the mechanisms by which tau binds to tubulin and induces microtubule formation.  相似文献   

16.
The calmodulin-binding domain on microtubule-associated protein 2   总被引:2,自引:0,他引:2  
Microtubule-associated protein 2 (MAP2) binds calmodulin with a stoichiometry approaching 1-1.5 mol of calmodulin/mol of MAP2 in the presence of calcium ion. The calmodulin-binding domain(s) of MAP2 were probed by cross-linking 125I-calmodulin with partially digested MAP2, by limited digestion of the preformed 125I-calmodulin-MAP2 adduct, and by cross-linking 125I-calmodulin with the projection- and assembly-promoting portions of MAP2. Cross-linking 125I-calmodulin with partially digested MAP2 resulted in radioactive adducts of approximately 300, approximately 235, approximately 205, approximately 58, and approximately 40 kDa. The radioactive adducts with smaller molecular mass became prominent with increasing time of digestion concomitant with loss of those with higher molecular size. Limited chymotryptic digestion of preformed 125I-calmodulin-MAP2 adducts also produced a approximately 58-kDa radioactive band followed later by a approximately 40-kDa band. Brief chymotryptic digestion and subsequent centrifugation of microtubules preformed with pure tubulin and MAP2 permitted separation of microtubule-bound MAP2 fragments (molecular mass = approximately 215, approximately 180, and approximately 36 kDa) from unbound fragments (molecular mass = approximately 240, approximately 180, and approximately 140 kDa). 125I-Calmodulin cross-linked only with the microtubule-bound MAP2 fragments (forming mainly the approximately 58-kDa adduct) and not with unbound MAP2 fragments. Since the apparent molecular size of calmodulin is approximately 21 kDa on these sodium dodecyl sulfate-polyacrylamide gels, the results indicate that partial digestion of MAP2 by chymotrypsin produces a approximately 37-kDa fragment which can be further degraded to a approximately 20-kDa fragment. The approximately 37-kDa fragment that is labeled corresponds to the previously identified assembly-promoting fragment that attaches to the microtubule.  相似文献   

17.
It has been previously shown that a class of microtubule proteins, the so-called microtubule-associated proteins (MAPs), binds to the C-terminal part of tubulin subunits. We show here that microtubules composed of tubulin whose 4-kDa C-terminal domain was cleaved by subtilisin (S-microtubules) are unable to bind MAPs but can still bind the anterograde translocator protein kinesin and the retrograde translocator dynein. Binding of both motors to S-microtubules, like their binding to normal microtubules, was ATP-dependent. In addition, direct competition experiments showed that binding sites for kiensin and MAPs on the microtubule surface lattice do not overlap. Furthermore, S-microtubules stimulated the ATPase activity of kinesin at least 8-fold, and the affinities of kinesin for control and S-microtubules were identical. S-microtubules were able to glide along kinesin-coated coverslips at a rate of 0.2 microns/s, the same rate as control microtubules. We conclude, that unlike MAPs, kinesin and cytoplasmic dynein bind to the tubulin molecule outside the C-terminal region.  相似文献   

18.
R B Maccioni  C I Rivas    J C Vera 《The EMBO journal》1988,7(7):1957-1963
In previous studies we have demonstrated that a 4-kd tubulin fragment, including amino acid residues from Phe418 to Glu450 in alpha-subunit and Phe408-Ala445 of the beta-sequence, plays a major role in controlling tubulin interactions leading to microtubule assembly. The 4-kd carboxyl-terminal domain also constitutes an essential domain for the interaction of microtubule-associated proteins (MAPs). Removal of the 4-kd fragment facilitates tubulin self-association and renders the assembly MAP-independent. In order to define the substructure of the tubulin domain for MAP interaction, we have examined the binding of 3H-acetylated C-terminal peptides to MAP-2 and tau. Two synthetic peptides from the low-homology region within the 4-kd domain alpha (430-441) and beta (422-434) and the peptide, alpha (401-410) of the high-homology region adjacent to the 4-kd domain, were analyzed with respect to MAP interaction. The binding data showed a relatively strong interaction of MAP-2 with the beta (422-434) peptide and a weaker interaction of both MAPs components with alpha (430-441) tubulin peptide as analyzed by Airfuge ultracentrifugation and zone filtration chromatography. The homologous alpha (401-410) peptide did not bind to either MAP-2 or tau. Equilibrium dialysis experiments showed a co-operative binding of beta (422-434) peptide to multiple sites in tau. The alpha (430-441) peptide exhibited a stronger interaction for tau as compared with MAP-2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Taxol-stabilised erythrocyte microtubules assembled less readily than similarly prepared brain microtubules on adding 10(-4) M-10(-3) M concentrations of calcium at 2 degrees C. Scatchard plot analyses of the high affinity calcium binding sites showed that the erythrocyte tubulin contained only 0.9 high affinity binding sites per dimer compared to 1.4 binding sites per dimer for brain tubulin. Association constants, however, for calcium binding to both erythrocyte and brain tubulin were similar (3.0 x 10(-6) M and 2.1 x 10(-6) M). The beta-tubulin subunit appeared to be responsible for the lower calcium binding ability of erythrocyte tubulin as shown by a gel overlay assay with 45Ca. Strains-all, a dye that stains many calcium binding proteins blue, did not stain erythrocyte beta-tubulin or its chymotryptic C-terminal fragment blue as was the case for brain beta-tubulin and its chymotryptic C-terminal fragment. We suggest that the lower calcium binding ability of erythrocyte beta-tubulin may be implicated in the differential behaviour of erythrocyte microtubules.  相似文献   

20.
Synapsin 1 is a nerve terminal phosphoprotein whose role seems to encompass the linking of small synaptic vesicles to the cytoskeleton. Synapsin 1 can join small synaptic vesicles to neuronal spectrin, microfilaments and microtubules; it can also bundle microtubules and microfilaments. In this paper, the mode of interaction between synapsin 1 and microtubules has been investigated. Bundling is shown to be highly cooperative: the apparent Hill coefficient is 3.06 +/- 0.3, and bundling is half-maximal at 0.63 +/- 0.02 microM. Bundling occurs either when whole synapsin 1 preparations (containing monomers and oligomers) or when monomeric synapsin 1 is added to microtubules. However, it is not clear that synapsin 1 remains monomeric in the presence of microtubules. Synapsin 1-microtubule mixtures contain two types of filament. One type is characterised by microtubules often with synapsin 1 bound to their surface. The other type is composed of filaments of diameter 15 +/- 5 nm. This filament type is granular and made up in part of 14-nm-diameter particles. These dimensions are consistent with their being made up of polymerised synapsin 1. It is possible that microtubules induce the polymerisation of synapsin 1. Synapsin 1 had independent tubulin binding sites in the N-terminal head domain and in the C-terminal tail domain. Whole synapsin 1 can interact with tubulin after it has been digested to remove the tubulin C terminus (des-C-terminal tubulin). The interaction of des-C-terminal tubulin with synapsin 1 appears to be via the head domain, since 125I-des-C-terminal tubulin only shows specific binding to the head domain on gel blots. By contrast intact tubulin binds to both head and tail domains. Binding to the tail domain can be inhibited by a synthetic peptide representing the microtubule-associated protein 2 (MAP2) binding site of class II beta tubulin. These results suggest a model for microtubule bundling by synapsin 1 in which independent sites in the head and tail domains of synapsin 1 cross-link microtubules by interactions with two distinct sites in tubulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号