首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Maize ( Zea mays L., line F2) plants were grown in the field under high or low fertilization input to monitor the metabolic, biochemical and molecular events occurring in young vegetative leaves and in the different leaf stages along the main axis in plants harvested 15 days after silking. This study shows that in maize which possess large sinks represented by the seeds, nitrogen (N) management is different compared with tobacco in which sink strength is much lower and mostly limited to young developing leaves. Although in young leaves nitrate assimilation predominates in both species, ammonium assimilation exhibits some species-specific differences with respect to inorganic and organic N metabolite accumulation during leaf ageing. These differences are likely to be related to the high sink strength of the ear in maize, which continuously imports carbon and N assimilates during grain filling. Consequently, a number of cytosolic glutamine synthetase isoenzymes are expressed during leaf ageing to maintain a constant flux of reduced N necessary for the synthesis of organic N molecules used either for leaf protein synthesis or directly translocated to the grain. This situation contrasts with that found in tobacco for which leaf ammonium assimilation in the plastids is shifted to the cytosol during the transition from sink leaves to source leaves. These species-specific differences for N assimilation and recycling are discussed in relation to the evolution of leaf photosynthetic activity and leaf senescence, which both seem to be largely dependent on the different sink strength in each species.  相似文献   

4.
Summary. After an overview of the criteria for the definition of cell death in the animal cell and of its different types of death, a comparative analysis of PCD in the plant cell is reported. The cytological characteristics of the plant cell undergoing PCD are described. The role of plant hormones and growth factors in the regulation of this event is discussed with particular emphasis on PCD activation or prevention by polyamine treatment (doses, timing and developmental stage of the organism) in a Developmental cell death plant model: the Nicotiana tabacum (tobacco) flower corolla. Some of the effects of polyamines might be mediated by transglutaminase catalysis. The activity of this enzyme was examined in different parts of the corolla during its life span showing an acropetal trend parallel to the cell death wave. The location of transglutaminase in some sub-cellular compartments suggests that it exerts different functions in the corolla DCD.  相似文献   

5.
6.
7.
 The physiological properties of transgenic tobacco plants (Nicotiana tabacum L.) with decreased or increased transport capacities of the chloroplast triose phosphate/phosphate translocator (TPT) were compared in order to investigate the extent to which the TPT controls metabolic fluxes in wild-type tobacco. For this purpose, tobacco lines with an antisense repression of the endogenous TPT (αTPT) and tobacco lines overexpressing the TPT gene isolated from the C4 plant Flaveria trinervia (FtTPT) were used. The F. trinervia TPT expressed in yeast cells exhibited transport characteristics identical to the TPT from C3 plants. Neither antisense TPT plants nor FtTPT overexpressors showed a phenotype when grown in a greenhouse in air. Contents of starch and soluble sugars in upper source leaves were similar in TPT underexpressors and FtTPT overexpressors compared to the wild type at the end of the photoperiod. The FtTPT overexpressors incorporated more 14CO2 in sucrose than the wild type, indicating that the TPT limits sucrose biosynthesis in the wild type. There were only small effects on labelling of amino acids and organic acids. The mobilisation of starch was enhanced in αTPT lines but decreased in FtTPT overexpressors compared to the wild type. Enzymes involved in starch mobilisation or utilisation, such as α-amylase or hexokinase were increased in αTPT plants and, in the case of amylases, decreased in FtTPT overexpressors. Moreover, α-amylase activity exhibited a pronounced diurnal variation in αTPT lines with a maximum activity after 8 h in the light. These changes in starch hydrolytic activities were confirmed by activity staining of native gels. Activities of glucan phosphorylases were unaffected by either a decrease or an increase in TPT activity. There were also effects of TPT activities on steady-state levels of phosphorylated intermediates as well as total amino acids and malate. In air, there was no or little effect of altered TPT transport activity on either rates of photosynthetic electron transport and/or CO2 assimilation. However, in elevated CO2 (1500 μl · l−1) and low O2 (2%) the rate of CO2 assimilation was decreased in the αTPT lines and was slightly higher in FtTPT lines. This shows that the TPT limits maximum rates of photosynthesis in the wild type. Received: 26 March 1999 / Accepted: 21 August 1999  相似文献   

8.
In this article, we discuss the ways in which our understanding of the controls of nitrogen remobilisation in model species and crop plants have been increased through classical physiological studies and the use of transgenic plants or mutants with modified capacities for nitrogen or carbon assimilation and recycling. An improved understanding of the transition between nitrogen assimilation and nitrogen recycling will be vital, if improvements in crop nitrogen use efficiency are to reduce the need for excessive input of fertilisers and improve or stabilise yield. In this review, we present an overall view of past work and more recent studies on this topic, using different plants systems and models depicting the biochemical and molecular events occurring during the transition between sink leaves and source leaves. These models may provide a way to identify the nature of the metabolic or developmental signals triggering in a coordinate manner nitrogen and carbon recycling during leaf senescence. Another way of developing crop varieties with improved nitrogen use efficiency, and identifying key elements controlling the process of nitrogen remobilisation, is the use of quantitative genetics. We present and discuss recent findings on the genetic variability and basis of nitrogen use efficiency in crops in general and in maize in particular. A genetic approach using maize recombinant inbred lines was undertaken allowing the detection of Quantitative Trait Loci (QTLs) for morphological traits, grain yield and its components under high nitrogen or low nitrogen input. Co‐mapping was observed between genes encoding enzymes involved in nitrogen assimilation (nitrate reductase, glutamine synthetase) and these Quantitative Trait Loci. All coincidences were consistent with the expected physiological function of the corresponding enzyme activities. This work strongly suggests that in maize, nitrogen use efficiency can be improved both by marker‐assisted selection and genetic engineering.  相似文献   

9.
The ectopic expression of knotted homologues has cytokinin-like effects on plant morphology. The functional relationship between knotted and cytokinins was investigated in cultures of leaf tissue established from tobacco (Nicotiana tabacum L. cv. Havana 425) plants transformed with the maize knotted1 (kn1) gene regulated by cauliflower mosaic virus 35S RNA expression signals. In contrast to leaf tissues of untransformed plants, leaf tissues of kn1 transformants were capable of sustained, cytokinin-autotrophic growth on auxin-containing medium and resembled the tobacco cytokinin-autotrophic mutants Hl-1 and Hl-2. The concentration of 18 cytokinins was measured in cultures initiated from leaves of three independent kn1 transformants and the Hl-1 and Hl-2 mutants. Although cytokinin contents were variable, the content of several cytokinins in Kn1, Hl-1 and Hl-2 tissue lines was at least 10-fold higher than that of wild-type tobacco tissues and in the range reported for other cytokinin-autotrophic tobacco tissues. These results suggest that the cytokinin-autotrophic growth of Kn1 lines could result from elevated steady-state levels of cytokinins. Received: 7 July 1999 / Accepted: 10 November 1999  相似文献   

10.
11.
Despite a high nitrate uptake capacity, the nitrogen use efficiency (NUE) of oilseed rape is weak due to a relatively low N remobilization from vegetative (mostly leaves) to growing parts of the plant. Thus, this crop requires a high rate of N fertilization and leaves fall with a high N content. In order to reduce the rate of N fertilization and to improve the environmental impact of oilseed rape, new genotypes could be selected on their capacity to mobilize the foliar N. Various indicators of leaf senescence in oilseed rape were analysed during plant growth, as well as during senescence induced by N deprivation. Metabolic changes in leaves of increasing age were followed in N-supplied and N-deprived rosettes by measuring chlorophyll, total N, and soluble protein contents. Similarly, the expression of genes known to be up-regulated (SAG12) or down-regulated (Cab) during leaf senescence was monitored. The amount of soluble proteins per leaf was a better indicator of leaf senescence than chlorophyll or total N content, but was not evaluated as an accurate indicator under conditions of N deprivation. On the other hand, up-regulation of SAG12 concomitantly with down-regulation of Cab in the leaf revealed the spatial and temporal progression of leaf senescence in oilseed rape. This study shows, for the first time at the whole plant level, that the SAG12/Cab gene expressions match the sink/source transition for N during both developmental and nutrient stress-induced leaf senescence.  相似文献   

12.
13.
Plant growth is an important process in physiological as well as ecological respect and a number of metabolic parameters (elemental ratios as well as steady-state levels of individual metabolites) have been demonstrated to reflect this process on the whole plant level. Since plant growth is highly localized and is the result of a complex interplay of metabolic activities in sink and source organs, we propose that ratios in metabolite levels of sink and source organs are particularly well suited to characterize this process. To demonstrate such a connection, we studied organ-specific metabolite ratios from Lotus japonicus treated with mineral nutrients, salt stress or arbuscular mycorrhizal fungi. The plants were displaying a wide range of biomass and of flower/biomass ratios. In the analysis of our data we looked for correlations between shifts in sink/source metabolite ratios and plant productivity (biomass accumulated at the time of harvest). In addition we correlated shifts in metabolite ratios comparing competing generative and vegetative sink organs with shifts in productivity of the two organs (changes in flower/biomass ratios). In our analyses we observed clear shifts of carbohydrates and of compounds connected to nitrogen metabolism in favour of sink organs of particularly high productivity. These shifts were in agreement with general differences in metabolite steady-state levels when comparing sink and source organs. Our findings suggest that differentiation of sink and source organs during sampling for metabolomic experiments substantially increases the amount of information obtained from such experiments.  相似文献   

14.
Plants that use the highly efficient C4 photosynthetic pathway possess two types of specialized leaf cells, the mesophyll and bundle sheath. In mature C4 leaves, the CO2 fixation enzyme ribulose-1,5-bisphosphate carboxylase (RuBPCase) is specifically compartmentalized to the bundle sheath cells. However, in very young leaves of amaranth, a dicotyledonous C4 plant, genes encoding the large subunit and small subunit of RuBPCase are initially expressed in both photosynthetic cell types. We show here that the RuBPCase mRNAs and proteins become specifically localized to leaf bundle sheath cells during the developmental transition of the leaf from carbon sink to carbon source. Bundle sheath cell-specific expression of RuBPCase genes and the sink-to-source transition began initially at the leaf apex and progressed rapidly and coordinately toward the leaf base. These findings demonstrated that two developmental transitions, the change in photoassimilate transport status and the establishment of bundle sheath cell-specific RuBPCase gene expression, are tightly coordinated during C4 leaf development. This correlation suggests that processes associated with the accumulation and transport of photosynthetic compounds may influence patterns of photosynthetic gene expression in C4 plants.  相似文献   

15.
Scaling relations among plant traits are both cause and consequence of processes at organ-to-ecosystem scales. The relationship between leaf nitrogen and phosphorus is of particular interest, as both elements are essential for plant metabolism; their limited availabilities often constrain plant growth, and general relations between the two have been documented. Herein, we use a comprehensive dataset of more than 9300 observations of approximately 2500 species from 70 countries to examine the scaling of leaf nitrogen to phosphorus within and across taxonomical groups and biomes. Power law exponents derived from log–log scaling relations were near 2/3 for all observations pooled, for angiosperms and gymnosperms globally, and for angiosperms grouped by biomes, major functional groups, orders or families. The uniform 2/3 scaling of leaf nitrogen to leaf phosphorus exists along a parallel continuum of rising nitrogen, phosphorus, specific leaf area, photosynthesis and growth, as predicted by stoichiometric theory which posits that plants with high growth rates require both high allocation of phosphorus-rich RNA and a high metabolic rate to support the energy demands of macromolecular synthesis. The generality of this finding supports the view that this stoichiometric scaling relationship and the mechanisms that underpin it are foundational components of the living world. Additionally, although abundant variance exists within broad constraints, these results also support the idea that surprisingly simple rules regulate leaf form and function in terrestrial ecosystems.  相似文献   

16.
Carbon allocation within a plant depends on complex rules linking source organs (mainly shoots) and sink organs (mainly roots and fruits). The complexity of these rules comes from both regulations and interactions between various plant processes involving carbon. This paper presents these regulations and interactions, and analyses how agricultural management can influence them. Ecophysiological models of carbon production and allocation are good tools for such analyses. The fundamental bases of these models are first presented, focusing on their underlying processes and concepts. Different approaches are used for modelling carbon economy. They are classified as empirical, teleonomic, driven by source–sink relationships, or based on transport and chemical/biochemical conversion concepts. These four approaches are presented with a particular emphasis on the regulations and interactions between organs and between processes. The role of plant architecture in carbon partitioning is also discussed and the interest of coupling plant architecture models with carbon allocation models is highlighted. As an illustration of carbon allocation models, a model developed for peach trees, describing carbon transfer within the plant, and based on source–sink and Münch transport theory is presented and used for analyzing the link between roots, shoots and reproductive compartments. On this basis, the consequences of fruit load or plant pruning on fruit and vegetative growth can be evaluated.  相似文献   

17.
18.
棉铃发育期棉花源库活性对棉铃对位叶氮浓度的响应   总被引:3,自引:0,他引:3  
采用大田试验,以3个铃期差异明显的棉花品种为材料,研究了不同施氮量形成的棉铃对位叶氮浓度对棉花花铃期纤维发育源库活性指标的影响。结果表明:在花后同一时期,棉铃对位叶可溶性糖、蔗糖含量和磷酸蔗糖合成酶活性以及棉纤维蔗糖含量和蔗糖合成酶活性等均随对位叶氮浓度的升高呈先升高后降低的变化趋势(45、52 DPA(花后天数Days post anthesis)的纤维蔗糖含量趋势相反),可用抛物线方程Y=ax2+bx+c拟合(P<0.01),通过拟合方程得到各指标所对应的最佳对位叶氮浓度。45 DPA(德夏棉1号38 DPA)前,花后同一时期各指标对应的最佳对位叶氮浓度差异较小,通过幂函数方程建立最佳叶氮浓度随花后天数的拟合方程,得到纤维发育期内源库活性各指标达到或接近最优状态时的适宜对位叶氮浓度的动态方程。本试验条件下,德夏棉1号、科棉1号和美棉33B的适宜对位叶氮浓度的拟合方程分别为N德1=7.2263DPA-0.276(R2=0.9805**)、N科1=7.23DPA-0.3026(R2=0.9861**)、N美33B=7.0997DPA-0.2814(R2=0.9807**)。  相似文献   

19.
The upper leaf sheath of rice (Oryza sativa L.) serves as a temporary starch sink before heading, subsequently becoming a carbon source tissue to the growing panicle at the post-heading stage. The time of sink–source transition in upper leaf sheaths is highly correlated to the panicle exsertion. Here, we found that the expression profiles of starch synthesis genes such as ADP-glucose pyrophosphorylase large subunit 2, granule-bound starch synthase II, soluble starch synthase I, starch branching enzyme (SBE) I, SBEIII, and SBEIV were highly correlated with starch content changes during the heading period in the second leaf sheath below the flag leaf. In addition, the α-amylase2A and β-amylase were considered as major genes that were in charge of starch degradation at the post-heading period. Of the five sucrose transporter (OsSUT) genes, OsSUT1 and OsSUT4 appeared to play an important role in sucrose loading into the phloem of source leaf sheaths. Moreover, the microarray-based data implied that the dominant processes associated with functional leaf sheath transition from sink to source were carbohydrate metabolism and the translocation of the carbon and nitrogen sources and inorganic phosphate.  相似文献   

20.
In wheat the period of grain filling is characterized by a transition for all vegetative organs from sink to source status. To study this transition, the progression of physiological markers and enzyme activities representative of nitrogen metabolism was monitored from the vegetative stage to maturity in different leaf stages and stem sections of two wheat (Triticum aestivum) cultivars grown at high and low levels of N fertilization. In the two cultivars examined, we found a general decrease of the metabolic and enzyme markers occurred during leaf ageing, and that this decrease was enhanced when plants were N-limited. Both correlation studies and principal components analysis (PCA) showed that there was a strong relationship among total N, chlorophyll, soluble protein, ammonium, amino acids and glutamine synthetase (GS) activity. The use of a marker such as GS activity to predict the N status of wheat, as a function of both plant development and N availability, is discussed with the aim of selecting wheat genotypes with better N-use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号