首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the movement protein (MP) and nuclear shuttle protein (NSP) in the pathogenicity of Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, was studied. Both genes were expressed in Nicotiana benthamiana, Nicotiana tabacum, and Lycopersicon esculentum plants with the Potato virus X (PVX) expression vector or by stable transformation of gene constructs under the control of the 35S promoter in N. tabacum. No phenotypic changes were observed in any of the three species when the MP was expressed from the PVX vector or constitutively expressed in transgenic plants. Expression of the ToLCNDV NSP from the PVX vector in N. benthamiana resulted in leaf curling that is typical of the disease symptoms caused by ToLCNDV in this species. Expression of NSP from PVX in N. tabacum and L. esculentum resulted in a hypersensitive response (HR), demonstrating that the ToLCVDV NSP is a target of host defense responses in these hosts. The NSP, when expressed as a transgene under the control of the 35S promoter, resulted in necrotic lesions in expanded leaves that initiated from a point and then spread across the leaf. The necrotic response was systemic in all the transgenic plants. Deletion of 100 amino acids from the C terminus did not compromise the HR response, suggesting that this region has no role in HR. Deletion of 60 or 100 amino acids from the N terminus of NSP abolished the HR response, suggesting that these sequences are required for the HR response. These findings demonstrate that the ToLCNDV NSP is a pathogenicity determinant as well as a target of host defense responses.  相似文献   

2.
3.
4.
Expression of the Tomato yellow leaf curl virus-China (TYLCV-C) C2 protein and green fluorescent protein (GFP) fused to the C2 protein (C2-GFP) in Nicotiana benthamiana from a Potato virus X (PVX) vector induced necrotic ringspots on inoculated leaves as well as necrotic vein banding and severe necrosis on systemically infected leaves. The localization of GFP fluorescence in plant cells infected with PVX/C2-GFP and in insect cells transfected with Baculovirus expressing C2-GFP indicates that the TYLCV-C C2 protein is capable of shuttling GFP into plant and insect cell nuclei. Our data demonstrate that the TYLCV-C C2 protein may contribute to viral pathogenicity in planta and is nuclear localized.  相似文献   

5.
RNA silencing is a natural defense mechanism against genetic stress factors, including viruses. A mutant hordeivirus (Barley stripe mosaic virus [BSMV]) lacking the gammab gene was confined to inoculated leaves in Nicotiana benthamiana, but systemic infection was observed in transgenic N. benthamiana expressing the potyviral silencing suppressor protein HCpro, suggesting that the gammab protein may be a long-distance movement factor and have antisilencing activity. This was shown for gammab proteins of both BSMV and Poa semilatent virus (PSLV), a related hordeivirus. Besides the functions in RNA silencing suppression, gammab and HCpro had analogous effects on symptoms induced by the hordeiviruses. Severe BSMV-induced symptoms were correlated with high HCpro concentrations in the HCpro-transgenic plants, and substitution of the gammab cistron of BSMV with that of PSLV led to greatly increased symptom severity and an altered pattern of viral gene expression. The efficient systemic infection with the chimera was followed by the development of dark green islands (localized recovery from infection) in leaves and exemption of new developing leaves from infection. Recovery and the accumulation of short RNAs diagnostic of RNA silencing in the recovered tissues in wild-type N. benthamiana were suppressed in HCpro-transgenic plants. These results provide evidence that potyviral HCpro and hordeivirus gammab proteins contribute to systemic viral infection, symptom severity, and RNA silencing suppression. HCpro's ability to suppress the recovery of plants from viral infection emphasizes recovery as a manifestation of RNA silencing.  相似文献   

6.
The 3a movement protein (MP) plays a central role in the movement of the RNA plant virus, Brome mosaic virus (BMV). To identify host factor genes involved in viral movement, a cDNA library of Nicotiana benthamiana, a systemic host for BMV, was screened with far-Western blotting using a recombinant BMV MP as probe. One positive clone encoded a protein with sequence similarity to the alpha chain of nascent-polypeptide-associated complex from various organisms, which is proposed to contribute to the fidelity of translocation of newly synthesized proteins. The orthologous gene from N. benthamiana was designated NbNACa1. The binding of NbNACa1 to BMV MP was confirmed in vivo with an agroinfiltration-immunoprecipitation assay. To investigate the involvement of NbNACa1 in BMV multiplication, NbNACa1-silenced (GSNAC) transgenic N. benthamiana plants were produced. Downregulation of NbNACa1 expression reduced virus accumulation in inoculated leaves but not in protoplasts. A microprojectile bombardment assay to monitor BMV-MP-assisted viral movement demonstrated reduced virus spread in GSNAC plants. The localization to the cell wall of BMV MP fused to green fluorescent protein was delayed in GSNAC plants. From these results, we propose that NbNACa1 is involved in BMV cell-to-cell movement through the regulation of BMV MP localization to the plasmodesmata.  相似文献   

7.
Citrus tristeza virus (CTV) naturally infects only some citrus species and relatives and within these it only invades phloem tissues. Failure to agroinfect citrus plants and the lack of an experimental herbaceous host hindered development of a workable genetic system. A full-genome cDNA of CTV isolate T36 was cloned in binary plasmids and was used to agroinfiltrate Nicotiana benthamiana leaves, with or without coinfiltration with plasmids expressing different silencing-suppressor proteins. A time course analysis in agroinfiltrated leaves indicated that CTV accumulates and moves cell-to-cell for at least three weeks postinoculation (wpi), and then, it moves systemically and infects the upper leaves with symptom expression. Silencing suppressors expedited systemic infection and often increased infectivity. In systemically infected Nicotiana benthamiana plants, CTV invaded first the phloem, but after 7 wpi, it was also found in other tissues and reached a high viral titer in upper leaves, thus allowing efficient transmission to citrus by stem-slash inoculation. Infected citrus plants showed the symptoms, virion morphology, and phloem restriction characteristic of the wild T36 isolate. Therefore, agroinfiltration of Nicotiana benthamiana provided the first experimental herbaceous host for CTV and an easy and efficient genetic system for this closterovirus.  相似文献   

8.
Tomato bushy stunt virus (TBSV) is one of few RNA plant viruses capable of moving systemically in some hosts in the absence of coat protein (CP). TBSV also encodes another protein (p19) that is not required for systemic movement but functions as a symptom determinant in Nicotiana benthamiana. Here, the role of both CP and p19 in the systemic spread has been reevaluated by utilizing transgenic N. benthamiana plants expressing the movement protein (MP) of Red clover necrotic mosaic virus and chimeric TBSV mutants that express CP of Turnip crinkle virus. Through careful examination of the infection phenotype of a series of mutants with changes in the CP and p19 genes, we demonstrate that both of these genes are required for efficient systemic invasion of TBSV in N. benthamiana. The CP likely enables efficient viral unloading from the vascular system in the form of assembled virions, whereas p19 enhances systemic infection by suppressing the virus-induced gene silencing.  相似文献   

9.
10.
Induction of plant cell division by beet curly top virus gene C4   总被引:9,自引:0,他引:9  
Beet curly top virus (BCTV) is a small DNA virus that causes tumorigenic growths (enations) in infected plants by inducing division of phloem parenchyma cells (hyperplasia). It has previously been shown that BCTV C4 plays an important role in symptom development in sugarbeet and Nicotiana benthamiana , and it has been suggested that this gene is responsible for the induction of hyperplasia. Using in situ hybridization, we show that BCTV infection is closely associated with the vascular system in these hosts, although hyperplastic cells associated with wild-type virus infection frequently do not contain detectable levels of viral DNA. Extensive hyperplasia was not observed in plants infected with a C4 mutant, demonstrating a role for C4 in virus-induced cell proliferation. Ectopic expression of C4 in transgenic N. benthamiana resulted in abnormal plant development and the production of tumorigenic growths, confirming that this gene alone is sufficient to initiate cell division in permissive cells when removed from the context of the viral genome.  相似文献   

11.
为了研究中国胜红蓟黄脉病毒(Ageratum yellow vein Chin virus,AYVCNV)和假马鞭曲叶病毒(Stachytarpheta leafcurl virus,StaLCV)C4蛋白的功能,利用烟草脆裂病毒(Tobacco rattle virus,TRV)载体在本氏烟(Nicotianabenthamiana)中分别表达了这两种病毒的C4蛋白,结果发现它们均能在本氏烟中引起类似于病毒侵染的症状,推测AYVCNV和StaLCV的C4蛋白是病毒的致病因子;在RNA沉默的抑制试验中,AYVCNV和StaLCV的C4蛋白均能够在表达gfp基因的转基因本氏烟(16c)上抑制由gfp基因正义链引起的基因沉默的建立,证明它们都是RNA沉默的抑制子。  相似文献   

12.
The cylindrical inclusion (CI) protein of potyviruses is involved in virus replication and cell-to-cell movement. These two processes should rely on multiple plant-virus interactions; however, little is known about the host factors that are involved in, or that may interfere with, CI functions. By using a yeast two-hybrid system, the CI protein from Plum pox virus (PPV) was found to interact with the photosystem I PSI-K protein, the product of the gene psaK, of Nicotiana benthamiana. Coexpression of PPV CI was shown to cause a decrease in the accumulation level of PSI-K transiently expressed in N. benthamiana leaves. To test the biological relevance of this interaction, we have analyzed the infection of PPV in N. benthamiana plants in which psaK gene expression has been silenced by RNA interference, as well as in Arabidopsis thaliana psaK knockout plants. Our results show that downregulation of the psaK gene leads to higher PPV accumulation, suggesting a role for the CI-PSI-K interaction in PPV infection.  相似文献   

13.
Medicago truncatula, the model plant of legumes, is well characterized, but there is only a little knowledge about it as a viral host. Viral vectors can be used for expressing foreign genes or for virus-induced gene silencing (VIGS), what is a fast and powerful tool to determine gene functions in plants. Viral vectors effective on Nicotiana benthamiana have been constructed from a number of viruses, however, only few of them were effective in other plants. A Tobamovirus, Sunnhemp mosaic virus (SHMV) systemically infects Medicago truncatula without causing severe symptoms. To set up a viral vector for Medicago truncatula, we prepared an infectious cDNA clone of SHMV. We constructed two VIGS vectors differing in the promoter element to drive foreign gene expression. The vectors were effective both in the expression and in the silencing of a transgene Green Fluorescent Protein (GFP) and in silencing of an endogenous gene Phytoene desaturase (PDS) on N. benthamiana. Still only one of the vectors was able to successfully silence the endogenous Chlorata 42 gene in M. truncatula.  相似文献   

14.
15.
Jovel J  Walker M  Sanfaçon H 《Journal of virology》2007,81(22):12285-12297
Recovery of plants from virus-induced symptoms is often described as a consequence of RNA silencing, an antiviral defense mechanism. For example, recovery of Nicotiana clevelandii from a nepovirus (tomato black ring virus) is associated with a decreased viral RNA concentration and sequence-specific resistance to further virus infection. In this study, we have characterized the interaction of another nepovirus, tomato ringspot virus (ToRSV), with host defense responses during symptom induction and subsequent recovery. Early in infection, ToRSV induced a necrotic phenotype in Nicotiana benthamiana that showed characteristics typical of a hypersensitive response. RNA silencing was also activated during ToRSV infection, as evidenced by the presence of ToRSV-derived small interfering RNAs (siRNAs) that could direct degradation of ToRSV sequences introduced into sensor constructs. Surprisingly, disappearance of symptoms was not accompanied by a commensurate reduction in viral RNA levels. The stability of ToRSV RNA after recovery was also observed in N. clevelandii and Cucumis sativus and in N. benthamiana plants carrying a functional RNA-dependent RNA polymerase 1 ortholog from Medicago truncatula. In experiments with a reporter transgene (green fluorescent protein), ToRSV did not suppress the initiation or maintenance of transgene silencing, although the movement of the silencing signal was partially hindered. Our results demonstrate that although RNA silencing is active during recovery, reduction of virus titer is not required for the initiation of this phenotype. This scenario adds an unforeseen layer of complexity to the interaction of nepoviruses with the host RNA silencing machinery. The possibility that viral proteins, viral RNAs, and/or virus-derived siRNAs inactivate host defense responses is discussed.  相似文献   

16.
Six endopolygalacturonases from Botrytis cinerea (BcPG1 to BcPG6) as well as mutated forms of BcPG1 and BcPG2 were expressed transiently in leaves of Nicotiana benthamiana using agroinfiltration. Expression of BcPG1, BcPG2, BcPG4, BcPG5, and mutant BcPG1-D203A caused symptoms, whereas BcPG3, BcPG6, and mutant BcPG2-D192A caused no symptoms. Expression of BcPG2 caused the most severe symptoms, including wilting and necrosis. BcPG2 previously has been shown to be essential for B. cinerea virulence. The in vivo effect of this enzyme and the inhibition by a polygalacturonase-inhibiting protein (PGIP) was examined by coexpressing Bcpg2 and the Vvpgipl gene from Vitis vinifera in N. benthamiana. Coinfiltration resulted in a substantial reduction of the symptoms inflicted by the activity of BcPG2 in planta, as evidenced by quantifying the variable chlorophyll fluorescence yield. In vitro, however, no interaction between pure VvPGIP1 and pure BcPG2 was detected. Specifically, VvPGIP1 neither inhibited BcPG2 activity nor altered the degradation profile of polygalacturonic acid by BcPG2. Furthermore, using surface plasmon resonance technology, no physical interaction between VvPGIP1 and BcPG2 was detected in vitro. The data suggest that the in planta environment provided a context to support the interaction between BcPG2 and VvPGIP1, leading to a reduction in symptom development, whereas neither of the in vitro assays detected any interaction between these proteins.  相似文献   

17.
The optimized expression of recombinant Potato virus A coat protein (ACP) carrying two different epitopes from Human papillomavirus type 16 (HPV16) was developed. Epitope derived from minor capsid protein L2 was expressed as N-terminal fusion with ACP while an epitope derived from E7 oncoprotein was fused to its C-terminus. The construct was cloned into Potato X potexvirus (PVX) based vector and transiently expressed in plants using Agrobacterium tumefaciens mediated inoculation. To increase the level of expressed protein the transgenic Nicotiana benthamiana plants expressing Potato virus A HC-Pro gene and transgenic Nicotiana tabacum, cv. Petit Havana SR1 carrying Potato virus A P3 protein gene were tested. Synergistic infection of host plants with PVX carrying the construct and Potato virus Y(O) (PVY(O)) increased the expression of L2ACPE7 in N. tabacum and in transgenic N. benthamiana carrying potyviral HC-Pro gene as compared to control plants infected with L2ACPE7 only.  相似文献   

18.
Four glutathione S-transferase (GST) genes, NbGSTU1, NbGSTU2, NbGSTU3, and NbGSTF1, were amplified from cDNA of Nicotiana benthamiana leaves infected with Colletotrichum destructivum using primers based on conserved regions of N. tabacum GST sequences. Expression of NbGSTU1 and NbGSTU3 increased progressively during infection by either C. destructivum or Colletotrichum orbiculare, except for a slight decrease by NbGSTU1 late in the infection, whereas NbGSTU2 and NbGSTF1 expression remained relatively constant. Each of the four genes was cloned into a PVX vector for virus-induced gene silencing, and reduced expression of the four genes was detected by RT-PCR. A statistically significant increase in susceptibility of N. benthamiana to infection following gene silencing was found only for NbGSTU1-silenced plants, which had 130% more lesions and 67% more colonization by C. orbiculare compared with control plants. These results demonstrate that the different GST genes respond in different ways to fungal infection, and at least one plant GST gene has an important role in disease development.  相似文献   

19.
Cui X  Li G  Wang D  Hu D  Zhou X 《Journal of virology》2005,79(16):10764-10775
Our previous results demonstrated that the DNAbeta satellite (Y10beta) associated with Tomato yellow leaf curl China virus Y10 isolate (TYLCCNV-Y10) is essential for induction of leaf curl symptoms in plants and that transgenic expression of its betaC1 gene in Nicotiana plants induces virus-like symptoms. In the present study, in vitro DNA binding activity of the betaC1 proteins of Y10beta and DNAbeta (Y35beta) found in the Tobacco curly shoot virus Y35 isolate (TbCSV-Y35) were studied following their expression as six-His fusion proteins in Escherichia coli. Electrophoretic mobility shift assays and UV cross-linking experiments revealed that betaC1 proteins could bind both single-stranded and double-stranded DNA without size or sequence specificity. Suppression of green fluorescent protein (GFP) transgene silencing was observed with the new leaves of GFP-expressing Nicotiana benthamiana plants coinoculated by TYLCCNV-Y10 plus Y10beta or by TbCSV-Y35 plus Y35beta. In a patch agroinfiltration assay, the transiently expressed betaC1 gene of Y10beta or Y35beta was able to suppress host RNA silencing activities and permitted the accumulation of high levels of GFP mRNA in the infiltrated leaf patches of GFP transgenic N. benthamiana plants. The betaC1 protein of Y10beta accumulated primarily in the nuclei of plant and insect cells when fused with beta-glucuronidase or GFP and immunogold labeling showed that the betaC1 protein is present in the nuclei of infected N. benthamiana plants. A mutant version of Y10beta carrying the mutations within the putative nuclear localization sequence of the Y10 betaC1 protein failed to induce disease symptoms, suppress RNA silencing, or accumulate in the nucleus, suggesting that nuclear localization of the betaC1 protein is a key requirement for symptom induction and silencing suppression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号