首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton translocation coupled to trimethylamine N-oxide reduction was studied in Escherichia coli grown anaerobically in the presence of trimethylamine N-oxide. Rapid acidification of the medium was observed when trimethylamine N-oxide was added to anaerobic cell suspensions of E. coli K-10. Acidification was sensitive to the proton conductor 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). No pH change was shown in a strain deficient in trimethylamine N-oxide reductase activity. The apparent H+/trimethylamine N-oxide ratio in cells oxidizing endogenous substrates was 3 to 4 g-ions of H+ translocated per mol of trimethylamine N-oxide added. The addition of trimethylamine N-oxide and formate to ethylenediaminetetraacetic acid-treated cell suspension caused fluorescence quenching of 3,3'-dipropylthiacarbocyanine [diS-C3-(5)], indicating the generation of membrane potential. These results indicate that the reduction of trimethylamine N-oxide in E. coli is catalyzed by an anaerobic electron transfer system, resulting in formation of a proton motive force. Trimethylamine N-oxide reductase activity and proton extrusion were also examined in chlorate-resistant mutants. Reduction of trimethylamine N-oxide occurred in chlC, chlG, and chlE mutants, whereas chlA, chlB, and chlD mutants, which are deficient in the molybdenum cofactor, could not reduce it. Protons were extruded in chlC and chlG mutants, but not in chlA, chlB, and chlD mutants. Trimethylamine N-oxide reductase activity in a chlD mutant was restored to the wild-type level by the addition of 100 microM molybdate to the growth medium, indicating that the same molybdenum cofactor as used by nitrate reductase is required for the trimethylamine N-oxide reductase system.  相似文献   

2.
The spin trapping behavior of five carbamoyl-substituted EMPO derivatives, 5-aminocarbonyl-5-methyl-pyrroline N-oxide (CAMPO (AMPO)), 5-aminocarbonyl-5-ethyl-pyrroline N-oxide (CAEPO), 5-aminocarbonyl-5-propyl-pyrroline N-oxide (CAPPO), 5-aminocarbonyl-5-n-butyl-pyrroline N-oxide (CABPO), and 5-aminocarbonyl-5-n-pentyl-pyrroline N-oxide (CAPtPO), toward different oxygen- and carbon-centered radicals is described, the stabilities of the superoxide adducts ranging from about 8 to 17min.  相似文献   

3.
A series of metal carboxylates containing pyridine N-oxide are prepared via one pot synthesis and solid phase synthesis. The structural variations from metal to metal are observed. In the case of reactions of manganese(II) acetate with pyridine N-oxide in the presence of aromatic carboxylic acids, polymeric complexes with bridging aromatic carboxylate as well as bridging pyridine N-oxide are observed. Whereas, the reaction of copper(II) acetate with pyridine N-oxide in the presence of an aromatic carboxylic acid led to mononuclear or binuclear paddle wheel carboxylate complexes with monodentate pyridine N-oxide. Co-crystal of two neutral complexes having composition [Cu2(OBz)4(MeOH)2][Cu2(OBz)4(pyO)2] (where OBz = benzoate, pyO = pyridine N-oxide) each neutral parts have paddle wheel structure. Solid phase reaction of zinc chloride with sodium benzoate prepared in situ and pyridine N-oxide leads to a tetra-nuclear zinc complex.  相似文献   

4.
The metabolism of metyrapone was investigated in three mammalian and four non-mammalian species, and keto reduction was found to be the major metabolic route (except in the cat). Toad, lizard and tortoise did not form metyrapone N-oxides. Rat and cat formed both isomeric N-oxides of metyrapone, whereas rabbit and pigeon have a limited capacity to form only the N-oxide II and N-oxide I, respectively. There were marked sex differences in both keto reduction and N-oxidation in the rat. Anthracene did not affect metyrapone N-oxides formation in the male rat; however phenobarbitone and pregnenolone significantly induced N-oxide II formation, whereas ethanol induced both isomeric N-oxides formation. Cimetidine, a known cytochrome P-450 inhibitor, inhibited the N-oxide II formation but with an enhanced N-oxide I formation.  相似文献   

5.
The present paper describes that mammalian liver aldehyde oxidase is involved in the reduction of nicotinamide N-oxide to nicotinamide. Rabbit liver aldehyde oxidase supplemented with its electron donor exhibited a significant nicotinamide N-oxide reductase activity under anaerobic conditions. Liver cytosols from rabbits, hogs, guinea pigs, hamsters, rats and mice, all of them, similarly exhibited the N-oxide reductase activity in the presence of an electron donor of aldehyde oxidase, but not xanthine oxidase. The cytosolic N-oxide reductase activity was almost completely inhibited by menadione, an inhibitor of aldehyde oxidase.  相似文献   

6.
Reduction of trimethylamine N-oxide is catalyzed by at least two enzymes inEscherichia coli: trimethylamine N-oxide reductase, which is anaerobically induced by trimethylamine N-oxide, and the constitutive enzyme dimethyl sulfoxide reductase. In this study, an increase in the specific activity of trimethylamine N-oxide reduction was observed in the anaerobic culture with dimethyl sulfoxide, but the specific activity of dimethyl sulfoxide reduction was not changed. The inducible enzyme trimethylamine N-oxide reductase was found in this culture. A marked expression of the structural genetorA for trimethylamine N-oxide reductase was also observed in atorA-lacZ gene fusion strain under anaerobic conditions with either trimethylamine N-oxide or dimethyl sulfoxide.l-Methionine sulfoxide and the N-oxides of adenosine, picolines, and nicotinamide slightly repressed expression of the gene. Membrane-boundb- andc-type cytochromes involved in the trimethylamine N-oxide reduction were also produced in a wild-type strain grown anaerobically with dimethyl sulfoxide. But thec-type cytochrome was not produced in thetorA-lacZ strain grown anaerobically with trimethylamine N-oxide or dimethyl sulfoxide; this suggests that there is a correlation between the expression oftorA and the synthesis of the cytochrome.  相似文献   

7.
Reduction of tertiary amine N-oxides to the corresponding amines by liver preparations was investigated with imipramine N-oxide and cyclobenzaprine N-oxide under anaerobic conditions. Rabbit liver cytosol in the presence of an electron donor of aldehyde oxidase exhibited a significant N-oxide reductase activity which is comparable to the activity of the liver microsomes supplemented with NADPH. Rabbit liver aldehyde oxidase also exhibited the N-oxide reductase activity in the presence of its electron donor, indicating that the activity observed in the liver cytosol is due to this cytosolic enzyme. Furthermore, the tertiary amine N-oxide reductase activity of liver cytosols from rats, mice, hamsters and hogs was demonstrated by comparison with that of liver microsomes from these mammalian species.  相似文献   

8.
Based on the both of results for X-ray studies of tetrahydrothiazolopyridine derivative 1c and FXV673, we synthesized a series of thiazol-5-ylpyridine derivatives containing pyridine N-oxide and 2-carbamoylthiazole units to optimize the S4 binding element. N-Oxidation of thiazol-5-ylpyridine increased the anti-fXa activity more than 10-fold independent on the position of N-oxide. The 4-pyridine N-oxide derivatives 3a and 3d excelled over the tetrahydrothiazolopyridine 1b in potency. 2-Methylpyridine N-oxide 3d exhibited 49-fold selectivity over thrombin. Our modeling study proposed a binding mode that the pyridine N-oxide ring of 3a stuck into the "cation hole" , and the oxide anion of 3a occupied in the almost same space to that of FXV673. From observations of the SAR and modeling studies, we suggested the possibilities that the formation of hydrogen bond with the oxide anion in the "cation hole" and the affinity of cationic pyridine ring to S4 subsite were responsible for increase in anti-fXa activity.  相似文献   

9.
The spin trapping behavior of several ethyl-substituted EMPO derivatives, cis- and trans-5-ethoxycarbonyl-3-ethyl-5-methyl-pyrroline N-oxide (3,5-EEMPO), 5-ethoxycarbonyl-4-ethyl-5-methyl-pyrroline N-oxide (4,5-EEMPO), cis- and trans-5-ethoxycarbonyl-5-ethyl-3-methyl-pyrroline N-oxide (5,3-EEMPO), and 5-ethoxycarbonyl-5-ethyl-4-methyl-pyrroline N-oxide (5,4-EEMPO), toward a series of different oxygen- and carbon-centered radicals, is described. Considerably different stabilities of the superoxide adducts (ranging from about 12 to 55 min) as well as the formation of other radical adducts were observed.  相似文献   

10.
The potential benzo(c)fluorene antineoplastic agent benfluron (B) displays high activity against a broad spectrum of experimental tumours in vitro and in vivo. In order to suppress some of its undesirable properties, its structure has been modified. Benfluron N-oxide (B N-oxide) is one of benfluron derivatives tested. The main metabolic pathway of B N-oxide is its reduction to tertiary amine B. A key role of cytochrome P4502B and P4502E1 in B N-oxide reduction has been proposed in the rat. Surprisingly, B N-oxide is reduced also in the presence of oxygen although all other N-oxides undergo reduction only under anaerobic conditions. With the aim to determine the influence of the N-oxide chemical structure and its redox potential on reductase affinity, activity and oxygen sensitivity five relative benzo(c)fluorene N-oxides were prepared. A correlation between the redox potential measured and the non-enzymatic reduction ability of the substrate was found, but no effect of the redox potential on reductase activity was observed. Microsomal reductases display a high affinity to B N-oxide (apparent K(m) congruent with0. 2 mM). A modification of the side-chain or nitrogen substituents has led to only a little change in apparent K(m) values, but a methoxy group substitution on the benzo(c)fluorene moiety induced a significant K(m) increase (ten-fold). Based on kinetic study results, the scheme of mechanism of cytochrome P450 mediated benzo(c)fluorene N-oxides reduction have been proposed. All benzo(c)fluorene N-oxides under study were able to be reduced in the presence of oxygen. Changes in the B N-oxide structure caused an extent of anaerobic conditions preference. The relationship between the benzo(c)fluorene N-oxide structure and the profile of metabolites in microsomal incubation was studied and important differences in the formation of individual N-oxide metabolites were found.  相似文献   

11.
NAD (P) H-dependent reduction of nicotinamide N-oxide was investigated with rabbit liver preparations. Microsomes, microsomal NADPH-cytochrome c reductase or cytosolic aldehyde oxidase alone exhibited no nicotinamide N-oxide reductase activity in the presence of NADPH or NADH. However, when the microsomal preparations were combined with the cytosolic enzyme, a significant N-oxide reductase activity was observed in the presence of the reduced pyridine nucleotide. The activity was enhanced by FAD or methyl viologen. Cytosol alone supplemented with NADPH or NADH exhibited only a slight, but when combined with microsomes, a significant N-oxide reductase activity. Based on these facts, we propose a new electron transfer system consisting of NADPH-cytochrome c reductase and aldehyde oxidase, which exhibits nicotinamide N-oxide reductase activity in the presence of the reduced pyridine nucleotide.  相似文献   

12.
The aim of the present work was to explore the use of heteroaromatic thiol compounds, namely derivatives of pyridine and pyrimidine, as redox reagents for the in vitro-refolding of a recombinantly expressed single-chain Fv fragment (scFvOx). The mixed disulfide of scFvOx with glutathione was used as a starting material, while reduced glutathione, 4-mercaptopyridine, 2-mercaptopyrimidine, 2-mercaptopyridine N-oxide, and the mercaptobenzene derivative thiosalicylic acid, respectively, served as catalysts for the formation of native disulfide bonds during renaturation. In contrast to thiosalicylic acid, and despite their significantly lower thiol pKa values, none of the heteroaromatic thiol compounds accelerated the apparent kinetics of in vitro-refolding compared to the naturally occurring peptide glutathione. However, significantly improved renaturation yields were observed in the presence of 4-mercaptopyridine and 2-mercaptopyrimidine, demonstrating the usefulness of aromatic thiol compounds as reagents for the in vitro-refolding of antibody fragments.  相似文献   

13.
The spin trapping behavior of four novel carbamoyl-substituted EMPO derivatives, namely 5-carbamoyl-3,5-dimethyl-pyrroline N-oxide (CADMPO), 3,5-dimethyl-5-methylcarbamoyl-pyrroline N-oxide (DMMCAPO), 5-carbamoyl-3-ethyl-5-methyl-pyrroline N-oxide (CAEMPO), and 3-ethyl-5-methyl-5-methylcarbamoyl-pyrroline N-oxide (EMMCAPO), towards different oxygen- and carbon-centered radicals is described, the half lives of the respective superoxide adducts ranging from about 10 to 20 min. The most characteristic adducts were, however, formed from methyl, hydroxymethyl, hydroxyethyl, and carbon dioxide anion radicals.  相似文献   

14.
The syntheses, analytical properties, and spin trapping behavior of four novel EMPO derivatives, namely 5-ethoxycarbonyl-4-hydroxymethyl-5-methyl-pyrroline N-oxide (EHMPO), 5-ethoxycarbonyl-5-ethyl-4-hydroxymethyl-pyrroline N-oxide (EEHPO), 4-hydroxymethyl-5-methyl-5-propoxycarbonyl-pyrroline N-oxide (HMPPO), and 4-hydroxymethyl-5-methyl-5-iso-propoxycarbonyl-pyrroline N-oxide (HMiPPO), towards different oxygen- and carbon-centered radicals are described.  相似文献   

15.
A study of the effect of trimethylamine N-oxide on the stability of two recombinant forms of the prion protein PrP, an ovine full-length and a human truncated form, is here reported. Both thermal denaturation and denaturation at room temperature were analyzed at pH values above and below the pKa of trimethylamine N-oxide, which is close to 4.7. Surprisingly, results showed that not only is trimethylamine N-oxide able to decrease PrP thermal stability at low pH but it also acts as a strong denaturant at room temperature. Likely, this destabilization is due to the capability of the cationic form of trimethylamine N-oxide to interact with the protein backbone as well as to weaken electrostatic interactions which are important for PrP fold. These results constitute the first experimental measurement of the effect of trimethylamine N-oxide on PrP stability and provide an unambiguous proof of the destabilizing effect of this osmolyte on PrP at low pH.  相似文献   

16.
M Sugiura  K Iwasaki  H Noguchi  R Kato 《Life sciences》1974,15(8):1433-1442
Tiaramide N-oxide, a major metabolite of tiaramide, is reduced anaerobically to tiaramide by rat liver microsomes. The reaction requires NADPH and is inhibited by oxygen and carbon monoxide. Both phenobarbital and 3-methylcholanthrene treatments induced the reductase activity with increasing cytochrome P-450 content. Tiaramide N-oxide produced a pronounced spectral change with reduced cytochrome P-450 and the difference spectrum showed a peak of absorbance at 442 nm.These findings provide evidence in support of an essential role for cytochrome P-450 in the process of the N-oxide reduction.  相似文献   

17.
Clozapine and its two major metabolites, N-desmethylclozapine and clozapine N-oxide were quantified using a high-performance liquid chromatographic method with UV detection in dog plasma following a single dose of clozapine. The analysis was performed on a 5-micrometer Hypersil CN (CPS-1; 250x4.6 mm) column. The mobile phase consisted of acetonitrile-water-1 M ammonium acetate (50:49:1, v/v/v), which was adjusted to pH 5.0 with acetic acid. The detection wavelength was 254 nm. A liquid-liquid extraction technique was used to extract clozapine and its metabolites from dog plasma. The recovery rates for clozapine, N-desmethylclozapine, and the internal standard (I.S.) were close to 100% using this method. The recovery rate for clozapine N-oxide (62-66%) was lower as expected because it is more polar. The quantitation limits for clozapine, clozapine N-oxide, and N-desmethylclozapine were 0.11, 0.05 and 0.05 microM, respectively. Intra-day reproducibility for concentrations of 0.1, 1.0 and 5.0 microM were 10.0, 4.4 and 4.2%, respectively, for N-oxide; 11.2, 4.3 and 4.9%, respectively, for N-desmethylclozapine; and 10.8, 2.2 and 4.9%, respectively, for clozapine. Inter-day reproducibility was <15% for clozapine N-oxide, <8% for N-desmethylclozapine and <19% for clozapine. This simple method was applied to determine the plasma concentration profiles of clozapine, N-desmethylclozapine and clozapine N-oxide in dog following administration of a 10 mg/kg oral dose of clozapine.  相似文献   

18.
We have studied the effects of the detergent lauryl dimethylamine N-oxide and NaCl in the near infrared absorption spectra of the B800–850 antenna complex from Ectothiorhodospira sp. Strong spectral changes were induced on the BChl850 band by the lauryl dimethylamine N-oxide consisting of a blue shift, from 857 to 839–837 nm, and a hypochromism. No significant effects were detected on the BChl800 band in the same conditions. The changes were reversible after removing most of the detergent from the sample. Depending upon the detergent concentration in the solution, NaCl was also able to reverse the blueshift and increase the intensity of the 850 nm band close to the native values. Moreover, we have been able to separate both phenomena. Addition of 0.350 M NaCl after sample incubation with 0.15% (v/v) lauryl dimethylamine N-oxide for 30 min allowed a 9–10 nm redshift with no significant hyperchromism of the lowest energy band. We explained the overall effect of the detergent assuming that the lauryl dimethylamine N-oxide bound to the hydrophobic moiety of the complex and caused some protein conformational changes which affected the BChl850 domain without affecting that of the BChl800. The NaCl was able to circumvent these effects, most probably by acting directly on the BChl850 molecules or on the protein structure surrounding them.Abbreviations BChl bacteriochlorophyll - LDAO lauryl dimethylamine N-oxide - NIR near infrared  相似文献   

19.
The oxidation of trimethylamine to trimethylamine N-oxide in animals is catalyzed by an enzyme which has not yet been fully characterized. The discovery that a bacterial enzyme catalyzing the reverse reaction, the reduction of trimethylamine N-oxide to trimethylamine, utilizes the molybdenum cofactor to carry out this function raised the possibility that trimethylamine oxidation may also be dependent on this cofactor. It was found, however, that liver tissue from tungsten-treated rats contained normal levels of trimethylamine oxidase. In addition, analysis of a urine sample from a patient with trimethylamine oxidase deficiency revealed the presence of normal levels of urothione, the degradation product of the molybdenum cofactor. These results suggest that trimethylamine oxidase is not a molybdoenzyme and that oxidation of trimethylamine proceeds by a mechanism which differs considerably from a simple reversal of trimethylamine N-oxide reduction.  相似文献   

20.
Root cultures of Senecio erucifolius (Asteraceae) efficiently took up and incorporated [14C]putrescine and [14C]arginine into the pyrrolizidine alkaloid (PA) senecionine N-oxide. Pulse-chase experiments covering a growth period of 10 to 19 days revealed the absence of any significant alkaloid turnover. The only metabolic activity was a slow but progressive transformation of senecionine N-oxide into its dehydrogenation product, seneciphylline N-oxide. Tracer experiments with single roots showed that the sites of enhanced PA synthesis coincided with the sites of preferred protein synthesis, i.e. root apices, indicating a close correlation between growth activity and alkaloid synthesis. Long-term pulse-chase experiments (10 to 12 days) with 14C-labelled arginine, putrescine and senecionine fed to single roots indicated that in spite of its metabolic inertia, senecionine N-oxide is a mobile compound which is translocated into tissues newly grown during the chase.Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号