首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lowered pulmonary arterial pressure prevents edema after endotoxin in sheep   总被引:3,自引:0,他引:3  
Escherichia coli endotoxin causes increased capillary membrane permeability and increased pulmonary arterial pressure (PAP) in sheep. If the pulmonary hypertension extends to the level of the microvasculature, then the increased microvascular pressure may contribute to the pulmonary edema caused by endotoxin. We tested the hypothesis that reducing the pulmonary hypertension would reduce the amount of edema caused by endotoxin. Twelve sheep were chronically instrumented with catheters to measure PAP, left atrial pressure, and central venous pressure. The sheep were divided into two groups. One group (E) of six sheep received an intravenous infusion of 4 micrograms/kg of E. coli endotoxin. The second group (E + SNP) received the same dose of endotoxin as well as a continuous infusion of sodium nitroprusside (SNP) to reduce PAP. Three hours after the endotoxin infusions, the sheep were terminated and the extravascular fluid-to-blood-free dry weight ratios of the lungs were determined (EVF). The base-line PAP was 17.5 +/- 2.7 mmHg. A two-way analysis of variance demonstrated a significant difference (P less than 0.01) in PAP between the E and E + SNP groups. Although PAP in each group varied as a function of time, the difference between the two groups did not. The mean PAP for the E + SNP group (20.9 +/- 1.5 mmHg) was lower than the E group PAP of 27.3 +/- 2.1 mmHg after the endotoxin spike. Furthermore, the E + SNP group EVF (3.9 +/- 0.2) was significantly less than the EVF of the E group (4.7 +/- 0.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The canine lung lobe was embolized with 100-micron glass beads before lobectomy and blood anticoagulation. The lobe was isolated, ventilated, and pump-perfused with blood at an arterial pressure (Pa) of about 50 (high pressure, HP, n = 9) or 25 Torr (low pressure, LP, n = 9). Rus/PVR, the ratio of upstream (Rus) to total lobar vascular resistance (PVR), was determined by venous occlusion and the isogravimetric capillary pressure technique. The capillary filtration coefficient (Kf), an index of vascular permeability, was obtained from rate of lobe weight gain during stepwise capillary pressure (Pc) elevation. The embolized lobes became more edematous than nonembolized controls, (C, n = 11), (P less than 0.05), with Kf values of 0.20 +/- 0.04, 0.25 +/- 0.06, and 0.07 +/- 0.01 ml X min-1 X Torr-1 X 100 X g-1 in LP, HP, and C, respectively (P less than 0.05). The greater Rus/PVR in embolized lobes (P less than 0.05) protected the microvessels and, although Pc was greater in HP than in controls (P less than 0.05), Pc did not differ between HP and LP (P greater than 0.05). Although indexes of permeability did not differ between embolized groups (P greater than 0.05), HP became more edematous than LP (P less than 0.05). The greater edema in HP did not appear due to a greater imbalance of Starling forces across the microvessel wall or to vascular recruitment. At constant Pc and venous pressure, elevating Pa from 25 to 50 Torr in embolized lobes resulted in greater edema to suggest fluid filtration from precapillary vessels.  相似文献   

4.
5.
In six open-chest dogs, electrocardiogram- (ECG) controlled pulmonary arterial occlusion was performed during the control period and during the infusions of serotonin and histamine. A temporal series of instantaneous pulmonary capillary pressure and the longitudinal distributions of vascular resistance and compliance were evaluated in the intact left lower lung lobe. In the control period, we found a significant phasic variation of pulmonary capillary pressure (Pc) with the cardiac cycle. The ratio of arterial to venous resistances (Ra/Rv) was 6:4, and the ratio of arterial to capillary compliances (Ca/Cc) was 1:11. During the infusions of serotonin and histamine, Pc showed similar phasic variations, despite significant hemodynamic changes induced by these agents. Serotonin predominantly increased Ra, whereas histamine predominantly increased Rv. The ratio of Rv to the total resistance decreased significantly from 0.42 to 0.32 during the infusion of serotonin and increased significantly to 0.62 during the infusion of histamine. The data suggest that phasic Pc determined by ECG-controlled arterial occlusion reflects the pulsatility in the pulmonary microvascular bed under control conditions and after alterations of the pulmonary vascular resistance by serotonin and histamine.  相似文献   

6.
7.
8.
9.
Pulmonary lymph drains into the thoracic duct and then into the systemic venous circulation. Since systemic venous pressure (SVP) must be overcome before pulmonary lymph can flow, variations in SVP may affect lymph flow rate and therefore the rate of fluid accumulation within the lung. The importance of this issue is evident when one considers the variety of clinical interventions that increase SVP and promote pulmonary edema formation, such as volume infusion, positive-pressure ventilation, and various vasoactive drug therapies. We recorded pulmonary arterial pressure (PAP), left atrial pressure (LAP), and SVP in chronic unanesthetized sheep. Occlusion balloons were placed in the left atrium and superior vena cava to control their respective pressures. The superior vena caval occluder was placed above the azygos vein so that bronchial venous pressure would not be elevated when the balloon was inflated. Three-hour experiments were carried out at various LAP levels with and without SVP being elevated to 20 mmHg. The amount of fluid present in the lung was determined by the wet-to-dry weight ratio method. At control LAP levels, no significant difference in lung fluid accumulation could be shown between animals with control and elevated SVP levels. When LAP was elevated above control a significantly greater amount of pulmonary fluid accumulated in animals with elevated SVP levels compared with those with control SVP levels. We conclude that significant excess pulmonary edema formation will occur when SVP is elevated at pulmonary microvascular pressures not normally associated with rapid fluid accumulation.  相似文献   

10.
Effect of edema on the relationship between rate of fluid filtration and vascular pressure was studied in ventilated isolated dog lung lobes blood-perfused at constant flow. Constant rate of lobe weight gain (S), representing transvascular fluid flux, was obtained at different venous pressures (Pv) as Pv was increased stepwise from 2 to 40 and then similarly decreased from 40 to 2 Torr (n = 6). In another group (n = 6), edema was maximized by reversing the sequence of Pv change; S was obtained during similar Pv steps as Pv was decreased from 40 to 2 and then returned to 40 Torr. In both groups, delta S was disproportionately greater for delta Pv at higher Pv's, with S vs. Pv fit by an exponential curve (P less than 0.001). The exponential relationship was independent of lung hydration inasmuch as greater edema on the second limb of Pv change did not alter the curve (P greater than 0.05). At 144% weight gain, interstitial compliance was 55.5 +/- 26.8 ml.100 g-1.Torr-1 (n = 10). Interstitial pressure reportedly remains constant, i.e., fails to increase to further buffer fluid filtration, after transition of the lung interstitium from low to high compliance at approximately 40% lung weight gain. If so, then the exponential S vs. Pv relationship observed in the present study at elevated interstitial compliance does not appear related to tissue pressure-buffering effects.  相似文献   

11.
In a past study of hyperoxia-induced lung injury, the extensive lymphatic filling could have resulted from lymphatic proliferation or simple lymphatic recruitment. This study sought to determine whether brief lung injury could produce similar changes, to show which lymphatic compartments fill with edema, and to compare their three-dimensional structure. Tracheostomized rats were ventilated at high tidal volume (12-16 ml) or low tidal volume (3-5 ml) or allowed to breathe spontaneously for 25 min. Light microscopy showed more perivascular, interlobular septal, and alveolar edema in the animals ventilated at high tidal volume (P < 0.0001). Scanning electron microscopy of lymphatic casts showed extensive filling of the perivascular lymphatics in the group ventilated at high tidal volume (P < 0.01), but lymphatic filling was greater in the nonventilated group than in the group that was ventilated at low tidal volume (P < 0.01). The three-dimensional structures of the cast interlobular and perivascular lymphatics were similar. There was little filling and no difference in pleural lymphatic casts among the three groups. More edema accumulated in the surrounding lymphatics of larger blood vessels than smaller blood vessels. Brief high-tidal-volume lung injury caused pulmonary edema similar to that caused by chronic hyperoxic lung injury, except it was largely restricted to perivascular and septal lymphatics and prelymphatic spaces.  相似文献   

12.
13.
Effect of positive airway pressure on capillary transit time in rabbit lung   总被引:1,自引:0,他引:1  
We used fluorescence videomicroscopy to measure the passage of fluorescent dye through the subpleural microcirculation of the lung. With the rabbit in the left lateral decubitus position, the subpleural microcirculation was viewed either through a transparent parietal pleural window located in the superior part of the chest or directly with the chest open. There was no physical contact with the chest or lung. The rabbit was anesthetized, paralyzed, and mechanically ventilated with 100% O2. The dye was injected into the right ventricle during a 2-min apneic period to eliminate lung movement due to ventilation. The video signal of the passage of the dye was analyzed frame by frame by use of digital image processing to compensate for cardiogenic oscillations of the lung surface. Gray scale levels of an arteriole and adjacent venule were measured every 1/30 s. Capillary transit time was determined from the difference between the concentration-weighted mean time values of the arteriolar and venular dye dilution curves. We studied the effect of airway pressure (0-20 cmH2O) on transit time. Cardiac output was measured at different airway pressures by the thermal dilution technique. Capillary transit time averaged 0.60 s at functional residual capacity. Right ventricular-to-arteriolar transit time was four times as large as the capillary transit time. An increase in airway pressure from 0-5 to 20 cmH2O resulted in a fourfold increase in both capillary and arterial transit times and a threefold decrease in cardiac output.  相似文献   

14.
S Chien  F Fan  M M Lee  D A Handley 《Biorheology》1984,21(4):631-641
The effects of variations in transmural pressure over a range of 0 to 200 mmHg on transendothelial transport of macromolecules were studied in the canine common carotid artery. The uptake of 125I-albumin per unit artery weight increased with rising pressure. There was no significant difference in albumin permeability per unit luminal surface area between 0 and 100 mmHg, but permeability nearly doubled when pressure was raised to 200 mmHg. The contribution of an increased rate of transendothelial vesicle diffusion, as evaluated from the experimental determination of the ratio of attached-to-free vesicles and theoretical modeling, was found to be negligible. The reduction in transendothelial vesicle diffusion distance due to pressure-induced thinning of the peripheral zone contributes to a 25% increase in permeability. With the use of colloidal Ag and Au of various sizes, vesicle loading of particles with diameters greater than or equal to 15 nm was found to be severely restricted at transmural pressure less than or equal to 100 mmHg, but it was significantly enhanced at 200 mmHg, when particles as large as 25 nm became detectable in endothelial vesicles and subendothelial space. This hypertension-induced increase in macromolecular transport across the endothelium may cause an overloading of the arterial wall with low-density lipoproteins and play a significant role in atherogenesis.  相似文献   

15.
16.
In a model of increased hydrostatic pressure pulmonary edema Parker et al. (J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 267-276, 1978) demonstrated that alveolar pressure in occluded fluid-filled lung segments was determined primarily by interstitial fluid pressure. Alveolar pressure was subatmospheric at base line and rose with time as hydrostatic pressure was increased and pulmonary edema developed. To further test the hypothesis that fluid-filled alveolar pressure is determined by interstitial pressure we produced permeability pulmonary edema-constant hydrostatic pressure. After intravenous injection of oleic acid in dogs (0.01 mg/kg) the alveolar pressure rose from -6.85 +/- 0.8 to +4.60 +/- 2.28 Torr (P less than 0.001) after 1 h and +6.68 +/- 2.67 Torr (P less than 0.01) after 3 h. This rise in alveolar fluid pressure coincided with the onset of pulmonary edema. Our experiments demonstrate that during permeability pulmonary edema with constant capillary hydrostatic pressures, as with hemodynamic edema, alveolar pressure of fluid-filled segments seems to be determined by interstitial pressures.  相似文献   

17.
In experiments on sodium pentobarbital (40 mg/kg, i.p.) anesthetized mongrel cats of either sex weighting from 2.0 to 4.0 kg, it was found, that in conditions of oil pulmonary microembolization, followed by pulmonary edema, the most suitable is rapid and shallow pattern of ventilation, ensuring optimal ventilation/perfusion interrelation. The oil microembolization was introduced with intravenous administration (1 mg per kg of body weight during 2 min) of olive oil. It is necessary to provide flexible regimens of artificial ventilation and conformity of respiratory pattern and body's demands can be controlled according to pHa and PaO2. It is desirable that pH and pO2 can be evaluated continuously.  相似文献   

18.
The effects of embolization on the longitudinal distribution of pulmonary vascular pressures with respect to vascular compliance were determined by the vascular inflow and outflow occlusion technique in isolated blood-perfused pig lungs treated with papaverine to prevent vasomotor responses. Embolization with microspheres having mean diameters of 75, 200, and 550 microns and with barrier beads (2 X 3 X 3.5 mm) significantly increased the pressure gradient across the relatively compliant middle region (delta Pm) without increasing the gradients across the relatively noncompliant regions on the arterial (delta Pa) or venous (delta Pv) ends of the vasculature. In contrast ligation of several lobar arteries caused delta Pa to increase from 0.9 +/- 0.3 to 5.9 +/- 1.1 mmHg but did not change delta Pm or delta Pv. Assuming that delta Pa and delta Pv measured by vascular occlusion result from cessation of flow through resistances, these data suggest that in isolated pig lungs the vessels at the boundary between the arterial and middle regions defined by the occlusion technique are arteries greater than 2-3 mm diam and smaller than lobar arteries.  相似文献   

19.
20.
Mathew, Oommen P. Effects of transient intrathoracicpressure changes (hiccups) on systemic arterial pressure.J. Appl. Physiol. 83(2): 371-375, 1997.The purpose of the study was to determine the effect oftransient changes in intrathoracic pressure on systemic arterialpressure by utilizing hiccups as a tool. Values of systolic anddiastolic pressures before, during, and after hiccups were determinedin 10 intubated preterm infants. Early-systolic hiccups decreasedsystolic blood pressure significantly (P < 0.05) compared with control(39.38 ± 2.72 vs. 46.46 ± 3.41 mmHg) and posthiccups values,whereas no significant change in systolic blood pressure occurredduring late-systolic hiccups. Diastolic pressure immediately after thehiccups remained unchanged during both early- and late-systolichiccups. In contrast, diastolic pressure decreased significantly(P < 0.05) when hiccups occurred during diastole (both early and late). Systolic pressures of the succeeding cardiac cycle remained unchanged after early-diastolic hiccups, whereas they decreased after late-diastolic hiccups. Theseresults indicate that transient decreases in intrathoracic pressurereduce systemic arterial pressure primarily through an increase in thevolume of the thoracic aorta. A reduction in stroke volume appears tocontribute to the reduction in systolic pressure.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号