首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Utilizing the FISH technique, the gene for collagen XIV was mapped in the human and the mouse genome. The human gene (COL14A1) was assigned to chromosome bands 8q23-->q24.1. This assignment is in agreement with the localization of the undulin gene (UND), whose product has been suggested to be a variant of collagen XIV. The mouse gene (Col14a1) was assigned to chromosome 15 band D. Thus, collagen XIV represents another example of a gene that belongs to human/mouse homology group 90.  相似文献   

3.
Lack of type XV collagen in mice results in mild skeletal myopathy and increases vulnerability to exercise-induced skeletal muscle and cardiac injury [Proc. Natl. Acad. Sci. USA 98 (2001), 1194]. The expression of type XV collagen was studied during murine fetal development from 10.5 to 18.5 dpc using immunofluorescence. The first sign of type expression was seen in the capillaries of many tissues at 10.5 dpc, some of them showing developmental transitions in the expression. Interestingly, capillaries forming the blood-brain barrier and those of the sinusoidal type were essentially lacking in this collagen. Early expression was also detected in the skeletal muscle and peripheral nerves, while expression in the heart, kidney and lung appeared to be developmentally regulated. In addition, distinct staining was found in the perichondrium of the cartilage. Collectively, the dynamics of its expression during development, its localization in the basement membrane--fibrillar matrix interface and the consequences of its absence in mice suggest a structural role in providing stability at least in skeletal muscle and capillaries. The early prominent expression of type XV collagen in newly forming blood vessels could also indicate a possible role in angiogenic processes.  相似文献   

4.
5.
Type X collagen, a homotrimer of alpha 1 (X) polypeptide chains, is specifically expressed by hypertrophic chondrocytes in regions of cartilage undergoing endochondral ossification. We have previously described the isolation of a small fragment of the human type X collagen gene (COL10A1) and its localization to the q21-q22 region of human chromosome 6 [Apte, S., Mattei, M.-G. & Olsen, B. R. (1991) FEBS Lett. 282, 393-396]. Using this fragment as a probe to screen genomic libraries, we report here the isolation of human and mouse genomic clones which contain the major part of the human and mouse type X collagen genes. In both species, the 14-kb genomic clones which were isolated contain a long open reading frame (greater than 2000 bp in length) which codes for the entire C-terminal non-collagenous (NC1) domain, the entire collagenous (COL) domain and part of the N-terminal non-collagenous (NC2) domain of the alpha 1(X) collagen chain. The human genomic clone contains the major part of the COL10A1 gene, in addition to the region we have previously cloned, and is highly similar to the corresponding portions of the mouse genomic clone (84.5% similarity at the nucleotide level, and 86.1% at the level of the conceptual translation product). The identification of the mouse genomic clone as the alpha 1(X) collagen gene (Col10a1) was confirmed by in situ hybridization of a fragment of the mouse genomic clone to sections from newborn mice. Hybridization was restricted to the hypertrophic chondrocytes of developing chondroepiphyses, being absent in small chondrocytes and in other tissues. Using interspecific backcross analysis, the locus for the mouse alpha 1 (X) collagen gene was assigned to chromosome 10. The cloning and chromosomal mapping of the human and mouse alpha 1 (X) collagen genes now permit the investigation of the possible role of type X collagen gene defects in the genesis of chondrodysplasias in both species and provide data essential for the generation of transgenic mice deficient in type X collagen.  相似文献   

6.
An RFLP close to the human collagen I gene COL1A1.   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

7.
The fibrillar collagens provide structural scaffolding and strength to the extracellular matrices of connective tissues. We identified a partial sequence of a new fibrillar collagen gene in the NCBI databases and completed the sequence with bioinformatic approaches and 5' RACE. This gene, designated COL27A1, is approximately 156 kbp long and has 61 exons located on chromosome 9q32-33. The homologous mouse gene is located on chromosome 4. The gene encodes amino- and carboxyl-terminal propeptides similar to those in the 'minor' fibrillar collagens. The triple-helical domain is, however, shorter and contains 994 amino acids with two imperfections of the Gly-Xaa-Yaa repeat pattern. There were three sites of alternative RNA splicing, only one of which led to the intact mRNA that encodes this full-length collagen proalpha chain. Phylogenetic analyses indicated that COL27A1 forms a clade with COL24A1 that is distinct from the two known lineages of fibrillar collagens. Expression analyses of the mouse col27a1 gene demonstrated high expression in cartilage, the eye and ear, but also in lung and colon. It is likely that the major protein product of COL27A1, proalpha1(XXVII), is a component of the extracellular matrices of cartilage and these other tissues. Study of this collagen should yield insights into normal chondrogenesis, and provide clues to the pathogenesis of some chondrodysplasias and disorders of other tissues in which this gene is expressed.  相似文献   

8.
9.
Chou MY  Li HC 《Genomics》2002,79(3):395-401
We cloned a 4.1-kb full-length cDNA based on a reported human genomic clone containing a partial open reading frame (ORF) coding for a novel collagen-like protein. Sequence analysis indicated that the ORF codes for the alpha(1)-chain of type XXI collagen. Assembly of the genomic data reveals a complete sequence of the human gene COL21A1. COL21A1 is localized to chromosome 6p11.2-12.3, spanning 337 kb in size. The gene contains 31 exons, in which the 5'-untranslated exons 1 and 1a are alternatively spliced. The exon/domain organization of COL21A1 resembles that of the reported FACIT collagen genes, including COL9A1, COL9A2, COL9A3, and COL19A1, suggesting that these genes may have derived from the same ancestor FACIT gene by duplication. The expression of COL21A1 in human tissues is developmentally regulated, with a higher level at fetal stages. Type XXI collagen is an extracellular matrix component of the blood vessel walls, secreted by smooth-muscle cells. Platelet-derived growth factor (PDGF) has a pronounced effect on the stimulation of COL21A1 expression in cultured aortic smooth-muscle cells, suggesting that alpha1(XXI) collagen may contribute to the extracellular matrix assembly of the vascular network during blood vessel formation.  相似文献   

10.
Type X collagen is a homotrimeric, short chain, nonfibrillar collagen that is expressed exclusively by hypertrophic chondrocytes at the sites of endochondral ossification. The distribution and pattern of expression of the type X collagen gene (COL10A1) suggests that mutations altering the structure and synthesis of the protein may be responsible for causing heritable forms of chondrodysplasia. We investigated whether mutations within the human COL10A1 gene were responsible for causing the disorders achondroplasia, hypochondroplasia, pseudoachondroplasia, and thanatophoric dysplasia, by analyzing the coding regions of the gene by using PCR and the single-stranded conformational polymorphism technique. By this approach, seven sequence changes were identified within and flanking the coding regions of the gene of the affected persons. We demonstrated that six of these sequence changes were not responsible for causing these forms of chondrodysplasia but were polymorphic in nature. The sequence changes were used to demonstrate discordant segregation between the COL10A1 locus and achondroplasia and pseudoachondroplasia, in nuclear families. This lack of segregation suggests that mutations within or near the COL10A1 locus are not responsible for these disorders. The seventh sequence change resulted in a valine-to-methionine substitution in the carboxyl-terminal domain of the molecule and was identified in only two hypochondroplasic individuals from a single family. Segregation analysis in this family was inconclusive, and the significance of this substitution remains uncertain.  相似文献   

11.
12.
We report here on the complete structure of the human COL3A1 and COL5A2 genes. Collagens III and V, together with collagens I, II and XI make up the group of fibrillar collagens, all of which share a similar structure and function; however, despite the similar size of the major triple-helical domain, the number of exons coding for the domain differs between the genes for the major fibrillar collagens characterized so far (I, II, and III) and the minor ones (V and XI). The main triple-helical domain being encoded by 49-50 exons, including the junction exons, in the COL5A1, COL11A1 and COL11A2 genes, but by 43-44 exons in the genes for the major fibrillar collagens. Characterization of the genomic structure of the COL3A1 gene confirmed its association with the major fibrillar collagen genes, but surprisingly, the genomic organization of the COL5A2 gene was found to be similar to that of the COL3A1 gene. We also confirmed that the two genes are located in tail-to-tail orientation with an intergenic distance of approximately 22 kb. Phylogenetic analysis suggested that they have evolved from a common ancestor gene. Analysis of the genomic sequences identified a novel single nucleotide polymorphism and a novel dinucleotide repeat. These polymorphisms should be useful for linkage analysis of the Ehlers-Danlos syndrome and related disorders.  相似文献   

13.
The collagens constitute a large family of extracellular matrix components primarily responsible for maintaining the structure and biological integrity of connective tissue. These proteins exhibit considerable diversity size, sequence, tissue distribution, and molecular composition. Fourteen types of homo- and/or heterotrimeric molecules, thus far reported, are encoded by a minimum of 27 genes. Nineteen of these genes, including several that are closely linked, have been assigned to 10 separate autosomes, and one collagen gene has been mapped to the X chromosome. We have isolated a 2.1-kb human cDNA clone coding for a collagen molecule different in sequence and structure from types I-XIV collagens. This polypeptide has been designated the alpha 1 chain of type XV collagen. To determine the location of the corresponding gene, the cDNA clone was hybridized to rodent-human hybrid DNAs and to human metaphase chromosomes. The results obtained using the hybrid cell lines showed that this newly identified collagen gene, COL15A1, is present in the pter --> q34 region of chromosome 9. In situ hybridization allowed sublocalization to 9q21 --> q22, a region to which no other collagen genes had previously been assigned. Our data further demonstrate the complex arrangement of the many collagen genes in the human genome.  相似文献   

14.
Fibrochondrogenesis is a severe, autosomal-recessive, short-limbed skeletal dysplasia. In a single case of fibrochondrogenesis, whole-genome SNP genotyping identified unknown ancestral consanguinity by detecting three autozygous regions. Because of the predominantly skeletal nature of the phenotype, the 389 genes localized to the autozygous intervals were prioritized for mutation analysis by correlation of their expression with known cartilage-selective genes via the UCLA Gene Expression Tool, UGET. The gene encoding the α1 chain of type XI collagen (COL11A1) was the only cartilage-selective gene among the three candidate intervals. Sequence analysis of COL11A1 in two genetically independent fibrochondrogenesis cases demonstrated that each was a compound heterozygote for a loss-of-function mutation on one allele and a mutation predicting substitution for a conserved triple-helical glycine residue on the other. The parents who were carriers of missense mutations had myopia. Early-onset hearing loss was noted in both parents who carried a loss-of-function allele, suggesting COL11A1 as a locus for mild, dominantly inherited hearing loss. These findings identify COL11A1 as a locus for fibrochondrogenesis and indicate that there might be phenotypic manifestations among carriers.  相似文献   

15.
16.
17.
Spondylometaphyseal dysplasia (SMD) comprises a heterogeneous group of heritable skeletal dysplasias characterized by modifications of the vertebral bodies of the spine and metaphyses of the tubular bones. The genetic etiology of SMD is currently unknown; however, the type X collagen gene (COL10A1) is considered an excellent candidate, for two reasons: first, Schmid metaphyseal chondrodysplasia, a condition known to result from COL10A1 mutations, shows a significant phenotypic overlap with SMD; and, second, transgenic mice carrying deletions in type X collagen show SMD phenotypes. Hence, we examined the entire coding region of COL10A1 by direct sequencing of DNA from five unrelated patients with SMD and found a heterozygous missense mutation (Gly595Glu) cosegregating with the disease phenotype in one SMD family. This initial documented identification of a mutation in SMD expands our knowledge concerning the range of the pathological phenotypes that can be produced by aberrations of type X collagen (type X collagenopathy).  相似文献   

18.
The genes for the alpha-1 and alpha-2 chains of type IV collagen (COL4A1 and COL4A2) map to the same chromosomal band (13q34) and have a high degree of nucleotide homology. We have used pulsed field gel electrophoresis and cloned COL4A1 and COL4A2 DNA fragments as molecular probes to construct a 1200-kb macrorestriction map which encompasses both genes. The two genes are located within a 340-kb region with the 3' end of COL4A2 and the 5' region of COL4A1 separated by at least 100 kb but not more than 160 kb. These genes, therefore, are two members of a gene cluster on chromosome 13q34.  相似文献   

19.
Summary Ehlers-Danlos syndrome (EDS) type I is a generalized connective tissue disorder, the major manifestations of which are soft, velvety hyperextensible skin and moderately severe joint hypermobility. The gene defect or defects causing EDS type I have not yet been defined, but previous observations suggested that the syndrome may be caused by mutations in the genes for type-I collagen (COL1A1 and COL1A2) or type-III collagen (COL3A1). Here, we performed linkage studies for these three genes in large Azerbaijanian family with EDS type I. Three polymorphisms in the COL3A1 gene, two in the COL1A1 gene, and one in the COL1A2 gene were tested using the polymerase chain reaction. The data obtained excluded linkage of any of the three genes to EDS type I in the family.On leave of absence from Institute of Human Genetics, National Research Center of Medical Genetics, Moskvorechie St., 1. Moscow 115478, USSR  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号