首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
C33 Ag was originally identified by mAb inhibitory to syncytium formation induced by human T cell leukemia virus type 1. The Ag was shown to be a highly heterogeneous glycoprotein consisting of a 28-kDa protein and N-linked oligosaccharides ranging from 10 to 50 kDa. In the present study, cDNA clones were isolated from a human T cell cDNA expression library in Escherichia coli by using mAb C33. The identity of cDNA was verified by immunostaining and immunoprecipitation of transfected NIH3T3 cells with mAb. The cDNA contained an open reading frame of a 267-amino acid sequence which was a type III integral membrane protein of 29.6 kDa with four putative transmembrane domains and three putative N-glycosylation sites. The C33 gene was found to belong to a newly defined family of genes for membrane proteins, such as CD9, CD37, CD53, CD63, and TAPA-1, and was identical to R2, a cDNA recently isolated because of its strong up-regulation after T cell activation. Availability of mAb for C33 Ag enabled us to define its distribution in human leukocytes. C33 Ag was expressed in CD4+ T cells, CD19+ B cells, CD14+ monocytes, and CD16+ granulocytes. Its expression was low in CD8+ T cells and mostly negative in CD16+ NK cells. PHA stimulation enhanced the expression of C33 Ag in CD4+ T cells by about 5-fold and in CD8+ T cells by about 20-fold. PHA stimulation also induced the dramatic size changes in the N-linked sugars previously shown to accompany human T cell leukemia virus type 1-induced transformation of CD4+ T cells.  相似文献   

2.
Comment on: Abou-Kandil A, et al. Cell Cycle 2011; 10:3337-45.  相似文献   

3.
Studies using adherent cell lines have shown that glucose transporter-1 (GLUT-1) can function as a receptor for human T-cell leukemia virus type 1 (HTLV). In primary CD4(+) T cells, heparan sulfate proteoglycans (HSPGs) are required for efficient entry of HTLV-1. Here, the roles of HSPGs and GLUT-1 in HTLV-1 and HTLV-2 Env-mediated binding and entry into primary T cells were studied. Examination of the cell surface of activated primary T cells revealed that CD4(+) T cells, the primary target of HTLV-1, expressed significantly higher levels of HSPGs than CD8(+) T cells. Conversely, CD8(+) T cells, the primary target of HTLV-2, expressed GLUT-1 at dramatically higher levels than CD4(+) T cells. Under these conditions, the HTLV-2 surface glycoprotein (SU) binding and viral entry were markedly higher on CD8(+) T cells while HTLV-1 SU binding and viral entry were higher on CD4(+) T cells. Binding studies with HTLV-1/HTLV-2 SU recombinants showed that preferential binding to CD4(+) T cells expressing high levels of HSPGs mapped to the C-terminal portion of SU. Transfection studies revealed that overexpression of GLUT-1 in CD4(+) T cells increased HTLV-2 entry, while expression of HSPGs on CD8(+) T cells increased entry of HTLV-1. These studies demonstrate that HTLV-1 and HTLV-2 differ in their T-cell entry requirements and suggest that the differences in the in vitro cellular tropism for transformation and in vivo pathobiology of these viruses reflect different interactions between their Env proteins and molecules on CD4(+) and CD8(+) T cells involved in entry.  相似文献   

4.
Human T-cell leukemia virus type I and type II (HTLV-I and HTLV-II, respectively) infect certain sublines of the BJAB human B-cell line. We observed that the WH subline, but not the CC/84 subline, of BJAB cells were infectible by cell-free HTLV-I or HTLV-II and formed syncytia with cells infected by these retroviruses. This suggests that the BJAB-CC/84 cells possibly lack a membrane molecule(s) important for syncytium formation and infectibility. In order to identify this antigen, we generated polyclonal anti-BJAB-WH antisera which were adsorbed on BJAB-CC/84 cells. The adsorbed antisera bound only BJAB-WH and BJAB-CC/79 cells as demonstrated by complement-dependent cytotoxicity and flow cytometric assays. Furthermore, this adsorbed antisera bound several human T-cell clones, including SupT-1, as determined by flow cytometric assays. The adsorbed antiserum was monospecific as it immunoprecipitated only one 78- to 80-kDa protein from lysates of metabolically labeled BJAB-WH, BJAB-CC/79, and SupT-1, but not BJAB-CC/84, cells. The monospecific antisera detected a glycoprotein composed of a 64- to 66-kDa core protein containing tunicamycin-sensitive N-linked oligosaccharides. This membrane glycoprotein appears to be involved in HTLV-I- and HTLV-II-induced fusion and infection, as the monospecific antisera were capable of inhibiting both of these processes. The monospecific antisera diluted 1:50 and 1:90 inhibited 85 to 90% of syncytium formation induced in BJAB-WH, BJAB-CC/79, and SupT-1 cells cultured with HTLV-I- or HTLV-II-infected MT2, MoT, or FLW human T- or B-cell lines. At the same dilution, antisera inhibited 70 to 80% of infection of BJAB-WH cells by cell-free HTLV-I or HTLV-II. Thus, these studies indicate a role for a 78- to 80-kDa glycoprotein in HTLV-I or HTLV-II infection and syncytium formation.  相似文献   

5.
6.
While studying the potential role of vascular cell adhesion molecule-1 (VCAM-1) in infection of endothelial cells by human immunodeficiency virus (HIV), we found that VCAM-1 can mediate human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation. Both expression-vector-encoded and endogenously expressed VCAM-1 supported fusion of uninfected cells with HTLV-1-infected cells. Fusion was obtained with cell lines carrying the HTLV-1 genome and expressing viral proteins but not with an HTLV-1-transformed cell line that does not express viral proteins. In clones of VCAM-1-transfected cells, the degree of syncytium formation observed directly reflected the level of VCAM-1 expression. Syncytium formation between HTLV-1-expressing cells and VCAM-1+ cells could be blocked with antiserum against HTLV-1 gp46 and with a monoclonal antibody (MAb) against VCAM-1. Fusion was not blocked by antiserum against HIV or a MAb against VLA-4, the physiological counter-receptor for VCAM-1. The results indicate that VCAM-1 can serve as an accessory molecule or potential coreceptor for HTLV-1-induced cell fusion and provide direct evidence of a role for cell adhesion molecules in the biology of HTLV-1.  相似文献   

7.
We have generated a number of EBV-transformed B cell lines producing human mAb against human T cell leukemia virus type 1 (HTLV-1) from the peripheral blood B lymphocytes obtained from patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. Various synthetic peptides corresponding to antigenic regions of HTLV-1 gag and env proteins were used for the screening of antibodies in ELISA. In our study, four IgG mAb to the gag p19 amino acids 100 to 130, and 5 IgG mAb to the env p46 amino acids 175 to 199 were characterized. An immunofluorescence assay showed that all of these mAb specifically bound to the surface of HTLV-1-bearing cell lines. Among these mAb, one anti-gp46 mAb, designated KE36-11, neutralized the infectivity of HTLV-1 as determined by both the inhibition of HTLV-1-induced syncytium formation and transformation assays in vitro. An antibody-binding assay using overlapping oligopeptides revealed that KE36-11 recognized a new epitope locating between the gp46 amino acid sequence 187-193 (Ala-Pro-Pro-Leu-Leu-Pro-His). Another anti-gp46 mAb, designated KE36-7, showed antibody-dependent cellular cytotoxicity against HTLV-1-bearing cell line. KE36-7 bound strongly to the 10-mer peptide-gp46 187-196, and weakly to peptides containing the gp46 amino acid sequence 191-196 (Leu-Pro-His-Ser-Asn-Leu). These two epitopes, which are associated with HTLV-1 neutralization and antibody-dependent cellular cytotoxicity, are thus the first epitopes identified in human HTLV-1 infection. It is possible that passive immunization of humans with these two human mAb are effective on the protection of HTLV-1 infection in vivo.  相似文献   

8.
Human T-cell leukemia virus type 1 (HTLV-1) persistently infects humans, and the proviral loads that persist in vivo vary widely among individuals. Elevation in the proviral load is associated with serious HTLV-1-mediated diseases, such as adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. However, it remains controversial whether HTLV-1-specific T-cell immunity can control HTLV-1 in vivo. We previously reported that orally HTLV-1-infected rats showed insufficient HTLV-1-specific T-cell immunity that coincided with elevated levels of the HTLV-1 proviral load. In the present study, we found that individual HTLV-1 proviral loads established in low-responding hosts could be reduced by the restoration of HTLV-1-specific T-cell responses. Despite the T-cell unresponsiveness for HTLV-1 in orally infected rats, an allogeneic mixed lymphocyte reaction in the splenocytes and a contact hypersensitivity response in the skin of these rats were comparable with those of naive rats. HTLV-1-specific T-cell response in orally HTLV-1-infected rats could be restored by subcutaneous reimmunization with mitomycin C (MMC)-treated syngeneic HTLV-1-transformed cells. The reimmunized rats exhibited lower proviral loads than untreated orally infected rats. We also confirmed that the proviral loads in orally infected rats decreased after reimmunization in the same hosts. Similar T-cell immune conversion could be reproduced in orally HTLV-1-infected rats by subcutaneous inoculation with MMC-treated primary T cells from syngeneic orally HTLV-1-infected rats. The present results indicate that, although HTLV-1-specific T-cell unresponsiveness is an underlying risk factor for the propagation of HTLV-1-infected cells in vivo, the risk may potentially be reduced by reimmunization, for which autologous HTLV-1-infected cells are a candidate immunogen.  相似文献   

9.
Human T-cell lymphotropic virus type 1 (HTLV-1) envelope proteins play an important role in viral entry into target cells. In a syncytium formation assay consisting of a coculture of HTLV-1-bearing cells and target cells, mature gp46 and gp21 proteins each inhibited syncytium formation induced by HTLV-1-bearing cells. Experiments with 125I-labeled proteins showed that 125I-gp46 bound specifically with MOLT-4 target cells even in the presence of large amounts of gp21, whereas 125I-gp21 binding to target cells was completely blocked in the presence of large amounts of gp46. These observations suggest that HTLV-1 envelope proteins in syncytium formation interact with at least two components, which are located close to each other on the cell membrane. We isolated two components from MOLT-4 cell lysate, using Sepharose 4B columns coupled with peptides corresponding to amino acids 197 to 216 and 400 to 429, respectively, of the envelope protein. One is a trypsin digestion-sensitive component of approximately 34 to 35 kDa, which interacts specifically with gp46. The other is a nonprotein component, which interacts with gp21. This component was destroyed by sodium periodate oxidation and was partitioned into the methanol-chloroform phase. These observations suggest that these two components play an important role in HTLV-1 entry into target cells via membrane fusion.  相似文献   

10.
The Gag protein of human T-cell leukemia virus type 1 (HTLV-1) contains the conserved sequences PPxY and PTAP, which are putative viral motifs required for budding (L-domain motifs). We show here that the PPxY motif, but not the PTAP motif, is essential for HTLV-1 virion budding from the plasma membrane. In addition, we show that overexpression of Nedd4 enhances HTLV-1 budding and that Nedd4 interacts with Gag via its WW domain. The HECT domain of Nedd4 is also required for budding. These results indicate that Nedd4 or a Nedd4-related ubiquitin ligase plays a critical role in HTLV-1 budding.  相似文献   

11.
12.
Little is known about the requirements for human T-cell leukemia virus type 1 (HTLV-1) entry, including the identity of the cellular receptor(s). Previous studies have shown that although the HTLV receptor(s) are widely expressed on cell lines of various cell types from different species, cell lines differ dramatically in their susceptibility to HTLV-Env-mediated fusion. Human cells (293, HeLa, and primary CD4(+) T cells) showed higher levels of binding at saturation than rodent (NIH 3T3 and NRK) cells to an HTLV-1 SU immunoadhesin. A direct comparison of the binding of the HTLV-1 surface glycoprotein (SU) immunoadhesin and transduction by HTLV-1 pseudotyped virus revealed parallels between the level of binding and the titer for various cell lines. When cells were treated with phorbol myristate acetate (PMA), which down-modulates a number of cell surface molecules, the level of SU binding was markedly reduced. However, PMA treatment only slightly reduced the titer of murine leukemia virus(HTLV-1) on both highly susceptible and poorly susceptible cells. Treatment of target cells with trypsin greatly reduced binding, indicating that the majority of HTLV SU binding is to proteins. Polycations, which enhance the infectivity of several other retroviruses, inhibited HTLV-1 Env-mediated binding and entry on both human and rodent cells. These results suggest that factors other than the number of primary binding receptors are responsible for the differences in the titers of HTLV-1 pseudotypes between highly susceptible cells and poorly susceptible cells.  相似文献   

13.
Human T cell leukemia virus type 1 (HTLV-1) encodes p13, an 87-amino-acid protein that accumulates in the inner mitochondrial membrane. Recent studies performed using synthetic p13 and isolated mitochondria demonstrated that the protein triggers an inward potassium (K+) current and inner membrane depolarization. The present study investigated the effects of p13 on mitochondrial inner membrane potential (Δψ) in living cells. Using the potential-dependent probe tetramethyl rhodamine methyl ester (TMRM), we observed that p13 induced dose-dependent mitochondrial depolarization in HeLa cells. This effect was abolished upon mutation of 4 arginines in p13's α-helical domain that were previously shown to be essential for its activity in in vitro assays. As Δψ is known to control mitochondrial calcium (Ca2+) uptake, we next analyzed the effect of p13 on Ca2+ homeostasis. Experiments carried out in HeLa cells expressing p13 and organelle-targeted aequorins revealed that the protein specifically reduced mitochondrial Ca2+ uptake. These observations suggest that p13 might control key processes regulated through Ca2+ signaling such as activation and death of T cells, the major targets of HTLV-1 infection.  相似文献   

14.
Ras signaling pathways play an important role in cellular proliferation and survival, and inappropriate activation of Ras frequently results in cell transformation and cancer. Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) is the etiological agent of the adult T-cell leukemia/lymphoma (ATLL), a severe malignancy that has a poor prognosis and exhibits resistance to conventional chemotherapy. Although the mechanisms involved in cell transformation by HTLV-1 have not been completely clarified, it is generally thought that Tax plays a pivotal role in the process. We have previously proposed that a functionally active Ras protein is needed for efficient anti-apoptotic activity of Tax. In this study we report data indicating that the apoptotic resistance of cells expressing Tax, constitutively or transiently, is linked to the intracellular levels of Ras-GTP. Indeed, we found that Tax-positive cells have a high content of active Ras, and that inhibition of Ras signaling, using the antagonist farnesyl thyosalicylic acid (FTS), increases their sensitivity to apoptosis. FTS treatment was also accompanied by a decrease in ERK, but not Akt, phosphorylation. Thus, all together our data suggest that the interaction between Tax and Ras could be important to ATLL pathogenesis, and indicate Ras as a possible target for therapeutic intervention in ATLL patients.  相似文献   

15.
16.
Jolly C  Mitar I  Sattentau QJ 《Journal of virology》2007,81(24):13916-13921
Human immunodeficiency virus type 1 (HIV-1) can spread between CD4+ T cells by using a virological synapse (VS). The VS assembly is a cytoskeleton-driven process dependent on HIV-1 envelope glycoprotein (Env)-receptor engagement and is hypothesized to require adhesion molecule interactions. Here we demonstrate that leukocyte function-associated antigen 1 (LFA-1), intercellular adhesion molecule 1 (ICAM-1), and ICAM-3 are enriched at the VS and that inhibition of these interactions influences conjugate formation and reduces VS assembly. Moreover, CD4+ T cells deficient in LFA-1 or with modified LFA-1 function were less able to support VS assembly and cell-cell transfer of HIV-1. Thus, cognate adhesion molecule interactions at the VS are important for HIV-1 spread between T cells.  相似文献   

17.
Infection with the Human T-cell Leukemia virus type I (HTLV-1) retrovirus results in a number of diverse pathologies, including the aggressive, fatal T-cell malignancy adult T-cell leukemia (ATL) and the chronic, progressive neurologic disorder termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Worldwide, it is estimated there are 15-20 million HTLV-1-infected individuals; although the majority of HTLV-1-infected individuals remain asymptomatic carriers (AC) during their lifetime, 2-5% of AC develops either ATL or HAM/TSP, but never both. Regardless of asymptomatic status or clinical outcome, HTLV-1 carriers are at high risk of opportunistic infection. The progression to pathological HTLV-1 disease is in part attributed to the failure of the innate and adaptive immune system to control virus spread. The innate immune response against retroviral infection requires recognition of viral pathogen-associated molecular patterns (PAMPs) through pattern-recognition receptors (PRR) dependent pathways, leading to the induction of host antiviral and inflammatory responses. Recent studies have begun to characterize the interplay between HTLV-1 infection and the innate immune response and have identified distinct gene expression profiles in patients with ATL or HAM/TSP--upregulation of growth regulatory pathways in ATL and constitutive activation of antiviral and inflammatory pathways in HAM/STP. In this review, we provide an overview of the replicative lifecycle of HTLV-1 and the distinct pathologies associated with HTLV-1 infection. We also explore the innate immune mechanisms that respond to HTLV-1 infection, the strategies used by HTLV-1 to subvert these defenses and their contribution to HTLV-1-associated diseases.  相似文献   

18.
19.
A rapid immunochromatographic assay, using the recombinant immunodominant antigens of HTLV-1, has been developed to detect circulating antibodies to HTLV-1. The method was compared with an enzyme-linked immunosorbent assay by evaluating 1,631 serum or plasma samples. This HTLV-1 rapid assay was easy to perform and required no special equipment which provided visual result within 5 min with an excellent sensitivity and specificity in detecting HTLV-1 infection.  相似文献   

20.
Adult T-cell leukemia (ATL) occurs in a small population of human T-cell leukemia virus type 1 (HTLV-1)-infected individuals. Although the critical risk factor for ATL development is not clear, it has been noted that ATL is incidentally associated with mother-to-child infection, elevated proviral loads, and weakness in HTLV-1-specific T-cell immune responses. In the present study, using a rat system, we investigated the relationships among the following conditions: primary HTLV-1 infection, a persistent HTLV-1 load, and host HTLV-1-specific immunity. We found that the persistent HTLV-1 load in orally infected rats was significantly greater than that in intraperitoneally infected rats. Even after inoculation with only 50 infected cells, a persistent viral load built up to considerable levels in some orally infected rats but not in intraperitoneally infected rats. In contrast, HTLV-1-specific cellular immune responses were markedly impaired in orally infected rats. As a result, a persistent viral load was inversely correlated with levels of virus-specific T-cell responses in these rats. Otherwise very weak HTLV-1-specific cellular immune responses in orally infected rats were markedly augmented after subcutaneous reimmunization with infected syngeneic rat cells. These findings suggest that HTLV-1-specific immune unresponsiveness associated with oral HTLV-1 infection may be a potential risk factor for development of ATL, allowing expansion of the infected cell reservoir in vivo, but could be overcome with immunological strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号