首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different cDNAs for phosphoenolpyruvate carboxylase (PEPC) were isolated from soybean root nodules. The full-length cDNA of the most abundant isoform (GmPEPC7) was very similar to another one (GmPEPC15), the nucleotide sequence of which is identical to that of a reported clone (gmppc1) (Vazquez-Tello, A., Whittier, R.F., Kawasaki, T., Sugimoto, T., Kawamura, Y., Shibata, D. (1993) Plant Physiol. 103, 1025–1026). In the coding region, the newly isolated GmPEPC7 and the previously reported were gmppc1 99% and 98% identical at the amino acid and nucleotide levels, respectively. In contrast, they exhibited only 39% identity in the 3′ non-coding region, indicating that they are encoded by distinct genes. Northern blot analysis with 3′ non-coding regions as isoform-specific probes showed that GmPEPC7 is nodule-enhanced whereas GmPEPC15 (gmppc1) is expressed in most soybean tissues. The third clone (GmPEPC4) was much less homologous to the above two clones and thus was not further characterized. It was also shown by in situ hybridization that the nodule-enhanced isoform is expressed in all cell types in nodules, including in Bradyrhizobium-infected and uninfected cells and cortical cells. A relatively strong hybridization signal was detected in the vascular bundle pericycle. Southern blot analysis indicated that there are only two PEPC genes exhibiting a high degree of similarity in the soybean genome, one for the nodule-enhanced GmPEPC7 and the other for the constitutively expressed gmppc1. A phylogenetic tree based on the amino acid sequences of soybean PEPCs and nodule-enhanced PEPCs of alfalfa and pea suggested that the soybean nodule-enhanced isoform evolved from the housekeeping PEPC gene after the ureid-translocating and amide-translocating legumes diverged from each other.  相似文献   

2.
3.
4.
5.
Nodules are formed on legume roots as a result of signaling between symbiotic partners and in response to the activities of numerous genes. We cloned fragments of differentially expressed genes in spot-inoculated soybean (Glycine max) roots. Many of the induced clones were similar to known genes related to oxidative stress, such as thioredoxin and beta-carotene hydroxylase. The deduced amino acid sequences of full-length soybean cDNAs for thioredoxin and beta-carotene hydroxylase were similar to those in other species. In situ RNA hybridization revealed that the thioredoxin gene is expressed on the pericycle of 2-d-old nodules and in the infected cells of mature nodules, suggesting that thioredoxin is involved in nodule development. The thioredoxin promoter was found to contain a sequence resembling an antioxidant responsive element. When a thioredoxin mutant of yeast was transformed with the soybean thioredoxin gene it became hydrogen peroxide tolerant. These observations prompted us to measure reactive oxygen species levels. These were decreased by 3- to 5-fold in 7-d-old and 27-d-old nodules, coincident with increases in the expression of thioredoxin and beta-carotene hydroxylase genes. Hydrogen peroxide-producing regions identified with cerium chloride were found in uninoculated roots and 2-d-old nodules, but not in 7-d-old and 27-d-old nodules. RNA interference-mediated repression of the thioredoxin gene severely impaired nodule development. These data indicate that antioxidants such as thioredoxin are essential to lower reactive oxygen species levels during nodule development.  相似文献   

6.
7.
8.
9.
10.
11.
The Bradyrhizobium japonicum host-specific fixation gene hsfA was identified as essential for nitrogen fixation on cowpea, but not required for nitrogen fixation on soybean or siratro. The DNA sequence of the hsfA promoter contains a consensus RpoN, -24/-12 binding site, suggesting the involvement of a regulatory protein that binds to an upstream activating sequence (UAS). To further explore the regulation of this interesting gene, serial deletions of the hsfA promoter were made and fused with the beta-glucuronidase (GUS) gene. The HsfA3 deletion, containing 60 bp 5' of the -24/-12 sequence, showed a similar level of GUS expression to that shown by the longest fusion construct (HsfA1), containing 464 bp of upstream sequence. In contrast, the HsfA4-GUS fusion, containing only 20 bp 5' of the -24/-12 region, showed no GUS activity, delimiting the location of a putative UAS to a 40-bp region. During nodule development, GUS expression first appeared in nodules 12 days postinoculation (dpi) and reached a maximum level of expression in approximately 17-day-old nodules. By 28 dpi, HsfA-GUS expression had returned to a low, basal level. These data were consistent with the detection of hsfA mRNA by in situ hybridization in 17-day-old nodules, but not in 28-day-old nodules. In contrast to the stage-specific expression in cowpea, HsfA-GUS expression increased with nodule development in HsfA3-inoculated soybean. These data indicate that HsfA expression is regulated in cowpea in a unique developmental manner and that the DNA regulatory regions that control this expression are confined to a short, promoter-proximal region.  相似文献   

12.
SbPRP1 is a member of the soybean (Glycine max L. Merr) proline-rich cell wall protein family and is expressed at high levels in root tissue. To characterize the sequences required for this expression, we have fused 1.1 kb of upstream flanking DNA sequence from an SbPRP1 genomic clone to a gene encoding -glucuronidase (GUS). This construct was introduced into tobacco using Agrobacterium tumefaciens-mediated transformation. Histochemical staining of GUS activity in transgenic tobacco indicated that SbPRP1 is expressed in the apical and elongating region of both primary and lateral roots, most strongly in the epidermis. A similar localization pattern was found in transformed hairy roots when this construct was introduced into cowpea (Vigna aconitifolia) using Agrobacterium rhizogenes-mediated transformation. Nested 5-deletion analysis of the SbPRP1 promoter indicated that a minimal promoter for SbPRP1 expression in roots is located within the first 262 bases of upstream flanking DNA and that the region between –1080 and –262 is required for maximal expression of this gene. Gel retardation assays showed that nuclear factors can be detected in soybean roots which specifically bind to sequences located between –1080 and –623, a region which is needed for maximal expression of the SbPRP1 promoter. Northern hybridization analysis was also used to show that little SbPRP1 mRNA was present in roots during the first 24 h after imbibition. These studies indicate that SbPRP1 expression is localized to the actively growing region of the root and that this expression is temporally regulated during very early stages of seedling growth.  相似文献   

13.
14.
15.
16.
17.
We have analyzed promoter regulatory elements from a photoregulated CAB gene (Cab-E) isolated from Nicotiana plumbaginifolia. These studies have been performed by introducing chimeric gene constructs into tobacco cells via Agrobacterium tumefaciens-mediated transformation. Expression studies on the regenerated transgenic plants have allowed us to characterize three positive and one negative cis-acting elements that influence photoregulated expression of the Cab-E gene. Within the upstream sequences we have identified two positive regulatory elements (PRE1 and PRE2) which confer maximum levels of photoregulated expression. These sequences contain multiple repeated elements related to the sequence-ACCGGCCCACTT-. We have also identified within the upstream region a negative regulatory element (NRE) extremely rich in AT sequences, which reduces the level of gene expression in the light. We have defined a light regulatory element (LRE) within the promoter region extending from -396 to -186 bp which confers photoregulated expression when fused to a constitutive nopaline synthase ('nos') promoter. Within this region there is a 132-bp element, extending from -368 to -234 bp, which on deletion from the Cab-E promoter reduces gene expression from high levels to undetectable levels. Finally, we have demonstrated for a full length Cab-E promoter conferring high levels of photoregulated expression, that sequences proximal to the Cab-E TATA box are not replaceable by corresponding sequences from a 'nos' promoter. This contrasts with the apparent equivalence of these Cab-E and 'nos' TATA box-proximal sequences in truncated promoters conferring low levels of photoregulated expression.  相似文献   

18.
Expression of the gene encoding the beta subunit of beta-conglycinin, a major soybean seed storage protein, is upregulated by sulfur deficiency and downregulated by methionine (Met). The tissue-specificity of these regulatory mechanisms was studied using a sulfate-responsive region (beta(SR)) from the beta subunit gene promoter. Transgenic Arabidopsis thaliana lines were generated carrying a green fluorescent protein (GFP) reporter gene under control of the cauliflower mosaic virus 35S RNA promoter with a tandem repeat of the beta(SR) element, referred to as the P35S::beta(SR)x3: GFP transgene. Upregulation of P35S::beta(SR)x3:GFP by sulfur deficiency was strongest in leaf margins, where symptoms of sulfur deficiency first appear. P35S::beta(SR)x3:GFP was also upregulated at 2 d after a medium shift from sulfur-sufficient to sulfur-deficient conditions, suggesting that the chimeric promoter is an efficient indicator of sulfur nutritional status. Analysis of transgene expression in a Met-overaccumulating mto1-1 mutation background revealed that the beta(SR) region carries sufficient information for downregulation of promoter activity by Met in developing seeds, but not in young rosettes. Comparisons with another transgenic line, in which the full-length beta promoter is active in non-seed tissues, also suggested that at least two separate tissue-specific mechanisms exist for the downregulation of the beta promoter by Met.  相似文献   

19.
20.
Deletion analysis studies have been carried out on the nifHDK promoter (P1) of R. meliloti in an attempt to determine sequences involved in the expression of this promoter under both free-living microaerobic and symbiotic conditions. Deletion of a region downstream (+17 to +61) from the promoter element resulted in low levels of expression under free-living microaerobic conditions. However, wild-type levels of expression were obtained during symbiosis with Alfalfa plants. The sequences in this region were designated the "downstream sequences'. The pattern of expression observed when the downstream sequences were deleted was similar to that observed when a previously identified upstream activator sequence (UAS) was deleted. Only when both the downstream sequences and the UAS were deleted, did activity from the P1 promoter become significantly decreased during symbiosis. Expression studies of the P1 promoter in a nifA mutant background indicate that nifA is required for symbiotic expression of P1 which is enhanced by the presence of the downstream sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号