首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hoenke S  Wild MR  Dimroth P 《Biochemistry》2000,39(43):13223-13232
Malonate decarboxylase from Klebsiella pneumoniae consists of four subunits MdcA, D, E, and C and catalyzes the cleavage of malonate to acetate and CO(2). The smallest subunit MdcC is an acyl carrier protein to which acetyl and malonyl thioester residues are bound via a 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA prosthetic group and turn over during the catalytic mechanism. We report here on the biosynthesis of holo acyl carrier protein from the unmodified apoprotein. The prosthetic group biosynthesis starts with the MdcB-catalyzed condensation of dephospho-CoA with ATP to 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA. In this reaction, a new alpha (1' ' --> 2') glycosidic bond between the two ribosyl moieties is formed, and thereby, the adenine moiety of ATP is displaced. MdcB therefore is an ATP:dephospho-CoA 5'-triphosphoribosyl transferase. The second protein involved in holo ACP synthesis is MdcG. This enzyme forms a strong complex with the 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA prosthetic group precursor. This complex, called MdcG(i), is readily separated from free MdcG by native polyacrylamide gel electrophoresis. Upon incubation of MdcG(i) with apo acyl carrier protein, holo acyl carrier protein is synthesized by forming the phosphodiester bond between the 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA prosthetic group and serine 25 of the protein. MdcG corresponds to a 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA:apo ACP 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA transferase. In absence of the prosthetic group precursor, MdcG catalyzes at a low rate the adenylylation of apo acyl carrier protein using ATP as substrate. The adenylyl ACP thus formed is an unphysiological side product and is not involved in the biosynthesis of holo ACP. The 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA precursor of the prosthetic group has been purified and its identity confirmed by mass spectrometry and enzymatic analysis.  相似文献   

2.
Abstract: Neurofibroma type 1 tissue was investigated for the presence of growth-promoting activity on human neuroblastoma cells. The activity was isolated by gel filtration and reversed-phase column chromatographs from neurofibroma type 1 extracts. An adenosine-containing dinucleotide (adenylyl(3'-5')cytidine-3'-phosphate) was identified as one of the major components of the activities by its enzymatic fragmentation and liquid chromatography/mass spectrometry. Synthetic adenosine-containing dinucleotide derivatives such as cytidyl(3'-5')adenosine, cytidyl(2'-5')adenosine, adenylyl(3'-5')cytidine, and adenylyl(2'-5')cytidine showed a similar action. Cytidyl(3'-5')adenosine, cytidyl(2'-5')adenosine, and adenylyl(2'-5')cytidine, which are able to release a free adenosine through enzymatic hydrolysis, in particular elicited a strong activity corresponding to that of adenosine with the highest action. These results suggest that neuroblastoma cells are able to use adenosine-containing dinucleotides as well as mononucleotides for their survival and proliferation.  相似文献   

3.
The 2'-5' RNA ligase family members are bacterial and archaeal RNA ligases that ligate 5' and 3' half-tRNA molecules with 2',3'-cyclic phosphate and 5'-hydroxyl termini, respectively, to the product containing the 2'-5' phosphodiester linkage. Here, the crystal structure of the 2'-5' RNA ligase protein from an extreme thermophile, Thermus thermophilus HB8, was solved at 2.5A resolution. The structure of the 2'-5' RNA ligase superimposes well on that of the Arabidopsis thaliana cyclic phosphodiesterase (CPDase), which hydrolyzes ADP-ribose 1",2"-cyclic phosphate (a product of the tRNA splicing reaction) to the monoester ADP-ribose 1"-phosphate. Although the sequence identity between the two proteins is remarkably low (9.3%), the 2'-5' RNA ligase and CPDase structures have two HX(T/S)X motifs in their corresponding positions. The HX(T/S)X motifs play important roles in the CPDase activity, and are conserved in both the CPDases and 2'-5' RNA ligases. Therefore, the catalytic mechanism of the 2'-5' RNA ligase may be similar to that of the CPDase. On the other hand, the electrostatic potential of the cavity of the 2'-5' RNA ligase is positive, but that of the CPDase is negative. Furthermore, in the CPDase, two loops with low B-factors cover the cavity. In contrast, in the 2'-5' RNA ligase, the corresponding loops form an open conformation and are flexible. These characteristics may be due to the differences in the substrates, tRNA and ADP-ribose 1",2"-cyclic phosphate.  相似文献   

4.
C Lee  R J Suhadolnik 《FEBS letters》1983,157(1):205-209
The introduction of the cordycepin analog of (2'-5')An, (2'-5')ppp(3'dAp)n3'dA [referred to as (2'-5')p33'dAn], into mouse L929 cells and cultured human fibroblasts resulted in a dose-dependent inhibition of protein synthesis which was comparable to the inhibition observed by (2'-5')ppp(Ap)nA [referred to as (2'-5')p3An]. The inhibition of protein synthesis by (2'-5')p33'dAn was much more persistent than that of the naturally occurring (2'-5')p3An following prolonged incubation of cells. Furthermore, the (2'-5')p3An was cytotoxic to mammalian cells in culture, whereas the (2'-5')p33'dAn was not.  相似文献   

5.
Polymerization of amino-acid acyl cyclic-3',5'-nucleotides is postulated to be the origin of RNA and associated protein in prebiotic molecular evolution. The enthalpy change in the intramolecular interaction between the nucleotide base and the amino-acid side chain determines the stability of the particular complex, resulting in a preferred association (or coding) of a base for a particular amino acid. The compounds studied were glycine acyl cyclic-3',5'-guanylate where the strong hydrogen bond between protonated glycine and guanine N7 gives an enthalpy change of -0.05 h. Similarly, hydrogen bonds in l-lysine acyl cyclic-3',5'-adenylate give an enthalpy change of -0.06 h. Hydrophobic interactions in l-phenylalanine acyl cyclic-3',5'-uridylate give an enthalpy change of -0.02 h and the corresponding value for l-proline acyl cyclic-3',5'-cytidylate is -0.01 h. These interactions were expected to be modified as the genetic code became a duplet and finally a triplet code. The interactions have been shown to be feasible from the overall enthalpy changes in the ZKE approximation at the MP2/6-31G* level.  相似文献   

6.
Decauridylate containing exclusively a 2'-5' phospho-diester bond ([2'-5']U10) served as a template for the synthesis of oligoadenylates [oligo(A)s] from the 5'-phosphorimidazolide of 2'-5' diadenylate (ImpA-2'p5'A). Joining of [2'-5']U10and ImpA2'p5'A also took place in substantial amounts to yield long-chain oligoribonucleotides in the template-directed reaction. An unusual CD spectrum ascribed to helix formation between [2'-5']U10and [2'-5'](pA)2was observed under the same conditions as that of the template-directed reaction. The 3'-5' linked decauridylate ([3'-5']U10) also promoted the template-directed synthesis of oligo(A)s from ImpA2'p5'A, but more slowly compared with [2'-5']U10. The results indicate that short-chain RNA oligomers with a 2'-5' phosphodiester bond could lead to longer oligoribonucleotides by template-directed chain elongation.  相似文献   

7.
Two 5'-modified (2'-5')(A)4 oligomers with an increased resistance to phosphatase degradation were synthesized and evaluated for their ability to develop an antiviral response when introduced into intact cells by microinjection or by chemical conjugation to poly(L-lysine). The enzymatic synthesis of 5'-gamma-phosphorothioate and beta,gamma-difluoromethylene (2'-5')(A)4 from adenosine 5'-O-(3-thiotriphosphate) and adenosine beta,gamma-difluoromethylenetriphosphate by (2'-5')-oligoadenylate synthetase is described. The isolation and characterization of these (2'-5')(A)4 analogues were achieved by high-performance liquid chromatography. The structures of 5'-modified tetramers were corroborated by enzyme digestion. These two 5'-modified tetramers compete as efficiently as natural (2'-5')(A)4 for the binding of a radiolabeled (2'-5')(A)4 probe to ribonuclease (RNase) L. Nevertheless, at the opposite to 5'-gamma-phosphorothioate (2'-5')(A)4, beta,gamma-difluoromethylene (2'-5')(A)4 failed to induce an antiviral response after microinjection in HeLa cells. In addition, it behaves as an antagonist of RNase L as demonstrated by its ability to inhibit the antiviral properties of 5'-gamma-phosphorothioate (2'-5')(A)4 when both are microinjected in HeLa cells. The increased metabolic stability of 5'-gamma-phosphorothioate (2'-5')(A)4 as compared to that of (2'-5')(A)4 was first demonstrated in cell-free extracts and then confirmed in intact cells after introduction in the form of a conjugate to poly(L-lysine). Indeed, 5'-gamma-phosphorothioate (2'-5')(A)4-poly(L-lysine) conjugate induces protein synthesis inhibition and characteristic ribosomal RNA cleavages for longer times than unmodified (2'-5')(A)4-poly(L-lysine) in the same cell system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In continued studies to elucidate the requirements for binding to and activation of the 2',5'-oligoadenylate (2-5A) dependent endoribonuclease (RNase L), four 2-5A trimer analogs were examined to evaluate the effect of chirality of phosphorothioate substitution on biological activity. The chemical syntheses and purification of the four isomers of P-thio-3'-deoxyadenylyl-(2'-5')-P-thio-3'- deoxyadenylyl-(2'-5')-3'-deoxyadenosine, by the phosphoramidite approach, is described. The isolated intermediates were characterized by elemental and spectral analyses. The fully deblocked compounds were characterized by 1H and 31P NMR and HPLC analyses. The 2',5'-(3'dA)3 cores with either Rp or Sp chirality in the 2',5'-internucleotide linkages will bind to but will not activate RNase L. This is in contrast to 2',5'-A3 core analogs with either RpRp or SpRp phosphorothioate substitution in the 2',5'-internucleotide linkages which can bind to and activate RNase L. There are also marked differences in the ability of the 2',5'-A3 analogs to activate RNase L following introduction of the 5'-monophosphate. For example, the 5'monophosphates of 2',5'-(3'dA)3-RpRp and 2',5'-(3'dA)3-SpRp can bind to and activate RNase L, whereas the 5'-monophosphates of 2',5'-(3'dA)3-RpSp and 2',5'-(3'dA)3-SpSp can bind to but can not activate RNase L.  相似文献   

9.
The metastasis suppressor NM23-H1 possesses 3'-5' exonuclease activity   总被引:11,自引:0,他引:11  
NM23-H1 belongs to a family of eight gene products in humans that have been implicated in cellular differentiation and development, as well as oncogenesis and tumor metastasis. We have defined NM23-H1 biochemically as a 3'-5' exonuclease by virtue of its ability in stoichiometric amounts to excise single nucleotides in a stepwise manner from the 3' terminus of DNA. The activity is dependent upon the presence of Mg(2+), is most pronounced with single-stranded substrates or mismatched bases at the 3' terminus of double-stranded substrates, and is inhibited by both ATP and the incorporation of cordycepin, a 2'-deoxyadenosine analogue, into the 3'-terminal position. The 3'-5' exonuclease activity was assigned to NM23-H1 by virtue of: 1) precise coelution of enzymatic activity with wild-type and mutant forms of NM23-H1 protein during purification by hydroxylapatite and gel filtration column high performance liquid chromatography and 2) significantly diminished activity exhibited by purified recombinant mutant forms of the proteins. Lysine 12 appears to play an important role in the catalytic mechanism, as evidenced by the significant reduction in 3'-5' exonuclease activity resulting from a Lys(12) to glutamine substitution within the protein. 3'-5' Exonucleases are believed to play an important role in DNA repair, a logical candidate function underlying the putative antimetastatic and oncogenic activities of NM23-H1.  相似文献   

10.
The synthesis of some branched-chain-sugar nucleoside analogues.   总被引:1,自引:1,他引:0       下载免费PDF全文
1-(2,3-Epoxy-5-O-trityl-beta-D-lyxofuranosyl)uracil was treated with a number of carbon nucleophiles. Ethynyl lithium gave 3'-deoxy-3'-ethynyl-5'-O-trityl-ara-uridine, which was reduced to the corresponding 3'-ethenyl compound. Sodium cyanide gave 3'-cyano-3'-deoxy-5'-O-trityl-ara-uridine which upon alkaline hydrolysis gave the corresponding 3'-carboxamido compound. 1,3-Dithian-2-yl lithium gave 3'-deoxy-3'-(1,3-dithian-2-yl)-5'-O-trityl-ara-uridine. The trityl group was removed from each of these compounds by mild acidic hydrolysis. Treatment of 2 with 0.1M H2sO4 and mercury (II) acetate afforded 3'-acetyl-3'-deoxy-ara-uridine which upon reduction with NaBH4 gave 3'-deoxy-3'-(1-hydroxyethan-1-yl)-ara-uridine. Acetylation of 6 yielded 5'-O-acetyl-3'-acetyl-2',3'-didehydro-2',3'-dideoxyuridine which upon reduction with NaBH4 produced a mixture of 5'-O-acetyl-2',3'-didehydro-2',3'-dideoxy-3'-(1-hydroxyethan -1-yl)uridine and 1-(R)[5-(S)-acetoxymethyl-4-(1-hydroxyethan-1-yl)-tetrahydrofuran- 2-yl]- uracil. Reduction of 14 with Raney nickel followed by removal of the trityl group gave 3'-deoxy-3'-methyl-ara-uridine.  相似文献   

11.
Many organs express the extracellular 3',5'-cAMP-adenosine pathway (conversion of extracellular 3',5'-cAMP to 5'-AMP and 5'-AMP to adenosine). Some organs release 2',3'-cAMP (isomer of 3',5'-cAMP) and convert extracellular 2',3'-cAMP to 2'- and 3'-AMP and convert these AMPs to adenosine (extracellular 2',3'-cAMP-adenosine pathway). As astrocytes and microglia are important participants in the response to brain injury and adenosine is an endogenous neuroprotectant, we investigated whether these extracellular cAMP-adenosine pathways exist in these cell types. 2',3'-, 3',5'-cAMP, 5'-, 3'-, and 2'-AMP were incubated with mouse primary astrocytes or primary microglia for 1 h and purine metabolites were measured in the medium by mass spectrometry. There was little evidence of a 3',5'-cAMP-adenosine pathway in either astrocytes or microglia. In contrast, both cell types converted 2',3'-cAMP to 2'- and 3'-AMP (with 2'-AMP being the predominant product). Although both cell types converted 2'- and 3'-AMP to adenosine, microglia were five- and sevenfold, respectively, more efficient than astrocytes in this regard. Inhibitor studies indicated that the conversion of 2',3'-cAMP to 2'-AMP was mediated by a different ecto-enzyme than that involved in the metabolism of 2',3'-cAMP to 3'-AMP and that although CD73 mediates the conversion of 5'-AMP to adenosine, an alternative ecto-enzyme metabolizes 2'- or 3'-AMP to adenosine.  相似文献   

12.
A latent endoribonuclease, RNase L, binds to and is activated by (2'-5')oligoadenylates ((2'-5')(A)n, n = 2-15). Binding to a labeled derivative of (2'-5')(A)n, [32P](2'-5')(A)3pCp, is detected as a protein-ligand complex observed following nondenaturing polyacrylamide gel electrophoresis. One major binding complex and two minor binding complexes are readily seen in cytoplasmic extracts from Ehrlich ascites tumor cells, murine tissue extracts and rabbit liver tissue extracts. At least one of the more rapidly migrating complexes appears to be a proteolytic degradation product of the larger [32P](2'-5')(A)3pCp binding protein. Cell and tissue extracts containing [32P](2'-5')(A)3pCp binding activity can be immobilized onto nitrocellulose filters and [32P](2'-5')(A)3pCp binding activity detected using a simple, rapid, economical affinity blot assay. Detection of [32P](2'-5')(A)3pCp binding proteins following electrophoresis on nondenaturing polyacrylamide gels and the affinity blot assay significantly improve and simplify the analysis of (2'-5')(A)n binding proteins.  相似文献   

13.
A detailed theoretical analysis has been carried out to probe the conformational characteristics of (2'-5') polynucleotide chains. Semi-empirical energy calculations are used to estimate the preferred torsional combinations of the monomeric repeating unit. The resulting morphology of adjacent bases and the tendency to form regular single-stranded structures are determined by standard computational procedures. The torsional preferences are in agreement with available nmr measurements on model compounds. The tendencies to adopt base stacked and intercalative geometries are markedly depressed compared to those in (3'-5') chains. Very limited families of regular monomerically repeating single-stranded (2'-5') helices are found. Base stacking, however, can be enhanced (but helix formation is at the same time depressed) in mixed puckered chains. Constrained (2'-5') duplex structures have been constructed from a search of all intervening glycosyl and sugar conformations that form geometrically feasible phosphodiester linkages. Both A- and B-type base stacking are found to generate non-standard backbone torsions and mixed glycosyl/sugar combinations. The 2'- and 5'-residues are locked in totally different arrangements and are thereby prevented from generating long helical structures.  相似文献   

14.
The effect of 2' and 3'-O-aminoacyl-dinucleoside phosphates cytidylyl(3'-5')-2'(3')-O-L-phenyl-alanyladenosine (I), cytidylyl(3'-5')-3'-deoxy-2'-O-L-phenylalanyladenosine (IIa), cytidylyl(3'-5')-2'-deoxy-3'-O-L-phenylalanyladenosine (IIIa), cytidylyl(3'-5')-3'-deoxy-2'-O-glycyladenosine (IIb), cytidylyl(3'-5')-2'-deoxy-3'-O-glycyladenosine (IIIb), cytidylyl(3'-5')-3'-deoxy-2'-O-L-leucyladenosine (IIc), cytidylyl(3'-5')-2'-deoxy-3'-O-L-leucyladenosine (IIIc), cytidylyl(3'-5')-3'-O-L-phenylalanyladenosine (IIId) as analogs of the 2'(3')-aminoacyl-tRNA termini, on chloramphenicol binding to 70S Excherichia coli ribosomes was investigated. The association constants (Kb) of the investigated compounds were determined by the equilibrium dialysis method. Based on the constancy of Kb over the range of inhibitor concentration, it was determined that the binding site of the 2' isomers IIa-IIc overlaps with the chloramphenicol site, whereas the variability of Kb for the 3' isomers IIIb, IIIc and especially IIIa seems to indicate that they do not achieve a complete fit. The consistently higher values of the Kb values for the 3' isomers IIIa-IIIc relative to that of the 2' isomers IIa-IIc also indicate a stabilization of the binding of the former due to a specific interaction between its amino acid portion and a ribosomal site.  相似文献   

15.
A simple, two-step method is described for the synthesis of the 5'-pyro- and triphosphate derivatives of 3'-5' ApA, ApG, GpA and GpG. The readily accessible 2'(3')-5' ApA, ApG, GpA and GpG were converted in one step to the corresponding 5'-phosphoramidate derivatives which were then transformed to the 5'-pyro- and triphosphates. CD spectra of 3'-5' pn GpG (n = 0,1,2 or 3) derivatives, measured at pH 1, indicated stabilization of the (syn) G+p (anti)G conformation by the 5'-phosphate groups.  相似文献   

16.
17.
Vaccinia topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a pentapyrimidine target site 5'-CCCTTp downward arrow in duplex DNA. By introducing single 2'-5' phosphodiesters in lieu of a standard 3'-5' phosphodiester linkage, we illuminate the contributions of phosphodiester connectivity to DNA transesterification. We find that the DNA cleavage reaction was slowed by more than six orders of magnitude when a 2'-5' linkage was present at the scissile phosphodiester (CCCTT(2')p downward arrow(5')A). Thus, vaccinia topoisomerase is unable to form a DNA-(2'-phosphotyrosyl)-enzyme intermediate. We hypothesize that the altered geometry of the 2'-5' phosphodiester limits the ability of the tyrosine nucleophile to attain a requisite, presumably apical orientation with respect to the 5'-OH leaving group. A 2'-5' phosphodiester located to the 3' side of the cleavage site (CCCTTp downward arrowN(2')p(5')N) reduced the rate of transesterification by a factor of 500. In contrast, 2'-5' phosphodiesters at four other sites in the scissile strand (TpCGCCCTpT downward arrowATpTpC) and five positions in the nonscissile strand (3'-GGGpApApTpApA) had no effect on transesterification rate. The DNAs containing 2'-5' phosphodiesters were protected from digestion by exonuclease III. We found that exonuclease III was consistently arrested at positions 1 and 2 nucleotides prior to the encounter of its active site with the modified 2'-5' phosphodiester and that the 2'-5' linkage itself was poorly hydrolyzed by exonuclease III.  相似文献   

18.
Hypochromicity and circular dichroism data are reported for the 2' and 3'-0-aminiacyldinucleoside phosphates cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyl-adenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-L-phenylalanyladenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-glycyladenosine, and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine, all of which can act as analogs of the 3' terminus of AA-tRNA in various partial reactions of protein biosynthesis. Although all these systems have a 2'-OH group in the furanose of the 3'-residue, differences exist in the extent and/or mode of base-base overlap for most of them, except for cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyladenosine and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine. It is concluded that the biological activity of the above analogs is affected both by the position of the aminoacyl group and the stacking properties of the bases.  相似文献   

19.
Interleukin-6 (IL-6) activates (2'-5') A synthetase (2'-5' AS) gene expression in differentiating myeloleukemic M1 cells. Antibodies to type I interferon (IFN) inhibit 2'-5' AS induction but not differentiation. Analysis of the mechanism of 2'-5' AS induction shows that it does not result from increased IFN formation, but from a synergism between IL-6 and endogenously secreted IFN. IL-6 can activate expression of a CAT construct fused to the interferon response sequence (IRS) of the 2'-5' AS gene. In extracts of IL-6-treated M1 cells, changes in protein binding to IRS DNA can be demonstrated. One of the effects of IL-6 on M1 cells is, therefore, to induce DNA binding factors, some of which act on the same enhancer sequence as IFNs, resulting in a synergistic gene activation. M1 variants resistant to differentiation by IL-6 have lost the ability to induce the 2'-5' AS gene.  相似文献   

20.
The structural requirements of (2'-5')-oligoadenylic acid (pppA(2'p5'A)x, X greater than or equal to 1 or (2'-5'An) for inhibition of protein synthesis in cells were examined with a modified calcium-coprecipitation technique, using a series of trinucleotide analogs (pppA2'p5'A2'p5'N, N=rC, rG, rU, T, dC, dG, dA). In this system both the degree and the duration of the inhibition of protein synthesis were dependent on the added concentration of (2'-5')A3. Of all the heterotrimers, only the deoxy A derivative was active as an inhibitor of protein synthesis, while the other members of the analog series were found to have no inhibitory effects. In competition experiments between (2'-5')A3 and the non-active analogs, three heterotrimers were shown to reduce the activity of (2'-5')A3 in protein inhibition. In contrast, the dephosphorylated (2'-5')A3 had no inhibitory effect and was not effective in blocking (2'-5')A3. These results indicate that the 5'-terminal triphosphate is important for binding of (2'-5')A3 to the site of (2'-5')An action and the adenine base at the 2'-terminus is important for activating the machinery responsible for protein synthesis inhibition in the cells, most likely the (2'-5')An-activated nuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号