首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vacuole is the main cellular storage pool, where sucrose (Suc) accumulates to high concentrations. While a limited number of vacuolar membrane proteins, such as V-type H(+)-ATPases and H(+)-pyrophosphatases, are well characterized, the majority of vacuolar transporters are still unidentified, among them the transporter(s) responsible for vacuolar Suc uptake and release. In search of novel tonoplast transporters, we used a proteomic approach, analyzing the tonoplast fraction of highly purified mesophyll vacuoles of the crop plant barley (Hordeum vulgare). We identified 101 proteins, including 88 vacuolar and putative vacuolar proteins. The Suc transporter (SUT) HvSUT2 was discovered among the 40 vacuolar proteins, which were previously not reported in Arabidopsis (Arabidopsis thaliana) vacuolar proteomic studies. To confirm the tonoplast localization of this Suc transporter, we constructed and expressed green fluorescent protein (GFP) fusion proteins with HvSUT2 and its closest Arabidopsis homolog, AtSUT4. Transient expression of HvSUT2-GFP and AtSUT4-GFP in Arabidopsis leaves and onion (Allium cepa) epidermal cells resulted in green fluorescence at the tonoplast, indicating that these Suc transporters are indeed located at the vacuolar membrane. Using a microcapillary, we selected mesophyll protoplasts from a leaf protoplast preparation and demonstrated unequivocally that, in contrast to the companion cell-specific AtSUC2, HvSUT2 and AtSUT4 are expressed in mesophyll protoplasts, suggesting that HvSUT2 and AtSUT4 are involved in transport and vacuolar storage of photosynthetically derived Suc.  相似文献   

2.
Young meristematic plant cells contain a large number of small vacuoles, while the largest part of the vacuome in mature cells is composed by a large central vacuole, occupying 80% to 90% of the cell volume. Thus far, only a limited number of vacuolar membrane proteins have been identified and characterized. The proteomic approach is a powerful tool to identify new vacuolar membrane proteins. To analyze vacuoles from growing tissues we isolated vacuoles from cauliflower (Brassica oleracea) buds, which are constituted by a large amount of small cells but also contain cells in expansion as well as fully expanded cells. Here we show that using purified cauliflower vacuoles and different extraction procedures such as saline, NaOH, acetone, and chloroform/methanol and analyzing the data against the Arabidopsis (Arabidopsis thaliana) database 102 cauliflower integral proteins and 214 peripheral proteins could be identified. The vacuolar pyrophosphatase was the most prominent protein. From the 102 identified proteins 45 proteins were already described. Nine of these, corresponding to 46% of peptides detected, are known vacuolar proteins. We identified 57 proteins (55.9%) containing at least one membrane spanning domain with unknown subcellular localization. A comparison of the newly identified proteins with expression profiles from in silico data revealed that most of them are highly expressed in young, developing tissues. To verify whether the newly identified proteins were indeed localized in the vacuole we constructed and expressed green fluorescence protein fusion proteins for five putative vacuolar membrane proteins exhibiting three to 11 transmembrane domains. Four of them, a putative organic cation transporter, a nodulin N21 family protein, a membrane protein of unknown function, and a senescence related membrane protein were localized in the vacuolar membrane, while a white-brown ATP-binding cassette transporter homolog was shown to reside in the plasma membrane. These results demonstrate that proteomic analysis of highly purified vacuoles from specific tissues allows the identification of new vacuolar proteins and provides an additional view of tonoplastic proteins.  相似文献   

3.
In order to understand the salt tolerance and secretion in mangrove plant species, gel electrophoresis coupled with LC‐MS‐based proteomics was used to identify key transport proteins in the plasma membrane (PM) and tonoplast fractions of Avicennia officinalis leaves. PM and tonoplast proteins were purified using two‐aqueous‐phase partitioning and density gradient centrifugation, respectively. Forty of the 254 PM proteins and 31 of the 165 tonoplast proteins identified were predicted to have transmembrane domains. About 95% of the identified proteins could be classified based on their functions. The major classes of proteins were predicted to be involved in transport, metabolic processes, defense/stress response, and signal transduction, while a few of the proteins were predicted to be involved in other functions such as membrane trafficking. The main classes of transporter proteins identified included H+‐ATPases, ATP‐binding cassette transporters, and aquaporins, all of which could play a role in salt secretion. These data will serve as the baseline membrane proteomic dataset for Avicennia species. Further, this information can contribute to future studies on understanding the mechanism of salt tolerance in halophytes in addition to salt secretion in mangroves. All MS data have been deposited in the ProteomeXchange with identifier PXD000837 ( http://proteomecentral.proteomexchange.org/dataset/PXD000837 ).  相似文献   

4.
The acidic food vacuole of Plasmodium falciparum has been the subject of intense scientific investigation in the 40 years since its role in the digestion of host hemoglobin was first suggested. This proposed role has important implications for the complex host-parasite inter-relationship and also for the mode of action of several of the most effective antimalarial drugs. In addition, adaptive changes in the physiology of this organelle are implicated in drug resistance. Here we show that in addition to these functions, the digestive food vacuole of the malaria parasite is a dynamic internal store for free Ca2+, a role hitherto unsuspected. With the aid of live-cell laser scanning confocal imaging, spatiotemporal studies revealed that maintenance of elevated free Ca2+ in the digestive food vacuole (relative to cytosolic levels) is achieved by a thapsigargin (and cyclopiazonic acid)-sensitive Ca2+-pump in cooperation with a H+-dependent Ca2+ transporter. Redistribution of free cytosolic and vacuolar Ca2+ during parasite growth also suggests that vacuolar Ca2+ plays an essential role in parasite morphogenesis. These data imply that the digestive food vacuole of the malaria parasite is functionally akin to the vacuole of plants (tonoplast) and the small electron-dense granules of some parasites (acidocalcisomes) whereby H+-coupled Ca2+ transport is involved in ion transport, Ca2+ homeostasis, and signal transduction. These findings have significant implications for parasite development, antimalarial drug action, and mechanisms of drug resistance.  相似文献   

5.
Because they are immotile organisms, higher plants have developed efficient strategies for adaptation to temperature changes. During cold acclimation, plants accumulate specific types of solutes to enhance freezing tolerance. The vacuole is a major solute storage organelle, but until now the role of tonoplast proteins in cold acclimation has not been investigated. In a comparative tonoplast proteome analysis, we identified several membrane proteins with altered abundance upon cold acclimation. We found an increased protein abundance of the tonoplast pyrophosphatase and subunits of the vacuolar V-ATPase and a significantly increased V-ATPase activity. This was accompanied by increased vacuolar concentrations of dicarbonic acids and soluble sugars. Consistently, the abundance of the tonoplast dicarbonic acid transporter was also higher in cold-acclimatized plants. However, no change in the protein abundance of tonoplast monosaccharide transporters was detectable. However, a generally higher cold-induced phosphorylation of members of this sugar transporter sub-group was observed. Our results indicate that cold-induced solute accumulation in the vacuole is mediated by increased acidification of this organelle. Thus solute transport activity is either modulated by increased protein amounts or by modification of proteins via phosphorylation.  相似文献   

6.
Protein turnover is fundamental both for development and cellular homeostasis. The mechanisms responsible for the turnover of integral membrane proteins in plant cells are however still largely unknown. Recently, considerable attention has been devoted to the degradation of plasma membrane proteins. We have now studied the turnover of a tonoplast protein, the potassium channel TPK1, in fully differentiated Arabidopsis leaf cells and showed that its degradation occurs upon internalization into the vacuole. Here, we discuss the possible mechanisms and triggering events involved.  相似文献   

7.
As it grows within the human erythrocyte, the malaria parasite, Plasmodium falciparum, ingests the erythrocyte cytosol, depositing it via an endocytotic feeding mechanism in the "digestive vacuole," a specialized acidic organelle. The digestive vacuole is the site of hemoglobin degradation, the storage site for hemozoin (an inert biocrystal of toxic heme), the site of action of many antimalarial drugs, and the site of proteins known to be involved in antimalarial drug resistance. The acidic pH of this organelle is thought to play a critical role in its various functions; however, the mechanisms by which the pH within the vacuole is maintained are not well understood. In this study, we have used a combination of techniques to demonstrate the presence on the P. falciparum digestive vacuole membrane of two discrete H(+) pumping mechanisms, both capable of acidifying the vacuole interior. One is a V-type H(+)-ATPase, sensitive to concanamycin A and bafilomycin A(1). The other is a H(+)-pyrophosphatase, which was inhibited by NaF and showed a partial dependence on K(+). The operation of the H(+)-pyrophosphatase was dependent on the presence of a Mg(2+)-pyrophosphate complex, and kinetic experiments gave results consistent with free pyrophosphate acting as an inhibitor of the protein. The presence of the combination of a H(+)-ATPase and a H(+)-pyrophosphatase on the P. falciparum digestive vacuole is similar to the situation in the acidic tonoplasts (vacuoles) of plant cells.  相似文献   

8.
Soluble proteins are transported to the plant vacuole through the secretory pathway via membrane-bound vesicles. Targeting of vesicles to appropriate organelles requires several membrane-bound and soluble factors that have been characterized in yeast and mammalian systems. For example, the yeast PEP12 protein is a syntaxin homolog that is involved in protein transport to the yeast vacuole. Previously, we isolated an Arabidopsis thaliana homolog of PEP12 by functional complementation of the yeast pep12 mutant. Antibodies raised against the cytoplasmic portion of AtPEP12 have been prepared and used for intracellular localization of this protein. Biochemical analysis indicates that AtPEP12 does not localize to the endoplasmic reticulum, Golgi apparatus, plasma membrane, or tonoplast in Arabidopsis plants; furthermore, based on biochemical and electron microscopy immunogold labeling analyses, AtPEP12 is likely to be localized to a post-Golgi compartment in the vacuolar pathway.  相似文献   

9.
Organellar compartments involved in secretion are expanded during the transition from late pregnancy (basal secretory state) to lactation (maximal secretory state) to accommodate for the increased secretory function required for copious milk production in mammary epithelial cells. The Golgi complex is a major organelle of the secretory pathway and functions to sort, package, distribute, and post-translationally modify newly synthesized proteins and membrane lipids. These complex functions of the Golgi are reflected in the protein complement of the organelle. Therefore, using proteomics, the protein complements of Golgi fractions isolated at two functional states (basal and maximal) were compared to identify some of the molecular changes that occur during this transition. This global analysis has revealed that only a subset of the total proteins is up-regulated from steady state during the transition. Identification of these proteins by tandem mass spectrometry has revealed several classes of proteins involved in the regulation of membrane fusion and secretion. This first installment of the functional proteomic analysis of the Golgi complex begins to define the molecular basis for the transition from basal to maximal secretion.  相似文献   

10.
We generated fusions between three Arabidopsis (Arabidopsis thaliana) tonoplast intrinsic proteins (TIPs; alpha-, gamma-, and delta-TIP) and yellow fluorescent protein (YFP). We also produced soluble reporters consisting of the monomeric red fluorescent protein (RFP) and either the C-terminal vacuolar sorting signal of phaseolin or the sequence-specific sorting signal of proricin. In transgenic Arabidopsis leaves, mature roots, and root tips, all TIP fusions localized to the tonoplast of the central vacuole and both of the lumenal RFP reporters were found within TIP-delimited vacuoles. In embryos from developing, mature, and germinating seeds, all three TIPs localized to the tonoplast of protein storage vacuoles. To determine the temporal TIP expression patterns and to rule out mistargeting due to overexpression, we generated plants expressing YFP fused to the complete genomic sequences of the three TIP isoforms. In transgenic Arabidopsis, gamma-TIP expression was limited to vegetative tissues, but specifically excluded from root tips, whereas alpha-TIP was exclusively expressed during seed maturation. delta-TIP was expressed in vegetative tissues, but not root tips, at a later stage than gamma-TIP. Our findings indicate that, in the Arabidopsis tissues analyzed, two different vacuolar sorting signals target soluble proteins to a single vacuolar location. Moreover, TIP isoform distribution is tissue and development specific, rather than organelle specific.  相似文献   

11.
Mature motor cells of Mimosa pudica that exhibit large and rapid turgor variations in response to external stimuli are characterized by two distinct types of vacuoles, one containing large amounts of tannins (tannin vacuole) and one without tannins (colloidal or aqueous vacuole). In these highly specialized cells we measured the abundance of two tonoplast proteins, a putative water-channel protein (aquaporin belonging to the [gamma]-TIPs [tonoplast intrinsic proteins]) and the catalytic A-subunit of H+-ATPase, using either high-pressure freezing or chemical fixation and immunolocalization. [gamma]-TIP aquaporin was detected almost exclusively in the tonoplast of the colloidal vacuole, and the H+-ATPase was also mainly localized in the membrane of the same vacuole. Cortex cells of young pulvini cannot change shape rapidly. Development of the pulvinus into a motor organ was accompanied by a more than 3-fold increase per length unit of membrane in the abundance of both aquaporin and H+-ATPase cross-reacting protein. These results indicate that facilitated water fluxes across the vacuolar membrane and energization of the vacuole play a central role in these motor cells.  相似文献   

12.
A mammalian organelle map by protein correlation profiling   总被引:18,自引:0,他引:18  
Foster LJ  de Hoog CL  Zhang Y  Zhang Y  Xie X  Mootha VK  Mann M 《Cell》2006,125(1):187-199
  相似文献   

13.
Plant cells contain several types of vacuoles with specialized functions. Although the biogenesis of these organelles is well understood at the morphological level, the machinery involved in plant vacuole formation is largely unknown. We have recently identified an Arabidopsis mutant, vcl1, that is deficient in vacuolar formation. VCL1 is homologous to a protein that regulates membrane fusion at the tonoplast in yeast. On the basis of these observations, VCL1 is predicted to play a direct role in vacuolar biogenesis and vesicular trafficking to the vacuole in plants. In this work, we show that VCL1 forms a complex with AtVPS11 and AtVPS33 in vivo. These two proteins are homologues of proteins that have a well-characterized role in membrane fusion at the tonoplast in yeast. VCL1, AtVPS11, and AtVPS33 are membrane-associated and cofractionate with tonoplast and denser endomembrane markers in subcellular fractionation experiments. Consistent with this, VCL1, AtVPS11, and AtVPS33 are found on the tonoplast and the prevacuolar compartment (PVC) by immunoelectron microscopy. We also show that a VCL1-containing complex includes SYP2-type syntaxins and is most likely involved in membrane fusion on both the PVC and tonoplast in vivo. VCL1, AtVPS11, and AtVPS33 are the first components of the vacuolar biogenesis machinery to be identified in plants.  相似文献   

14.
For plants growing in highly saline environments, accumulation of sodium in the cell cytoplasm leads to disruption of metabolic processes and reduced growth. Maintaining low levels of cytoplasmic sodium requires the coordinate regulation of transport proteins on numerous cellular membranes. Our previous studies have linked components of the Salt-Overly-Sensitive pathway (SOS1-3) to salt tolerance in Arabidopsis thaliana and demonstrated that the activity of the plasma membrane Na+/H+ exchanger (SOS1) is regulated by SOS2 (a protein kinase) and SOS3 (a calcium-binding protein). Current studies were undertaken to determine if the Na+/H+ exchanger in the vacuolar membrane (tonoplast) of Arabidopsis is also a target for the SOS regulatory pathway. Characterization of tonoplast Na+/H+ exchange demonstrated that it represents activity originating from the AtNHX proteins since it could be inhibited by 5-(N-methyl-N-isobutyl)amiloride and by anti-NHX1 antibodies. Transport activity was selective for sodium (apparent Km=31 mm) and electroneutral (one sodium ion for each proton). When compared with tonoplast Na+/H+-exchange activity in wild type, activity was significantly higher, greatly reduced, and unchanged in sos1, sos2, and sos3, respectively. Activated SOS2 protein added in vitro increased tonoplast Na+/H+-exchange activity in vesicles isolated from sos2 but did not have any effect on activity in vesicles isolated from wild type, sos1, or sos3. These results demonstrate that (i) the tonoplast Na+/H+ exchanger in Arabidopsis is a target of the SOS regulatory pathway, (ii) there are branches to the SOS pathway, and (iii) there may be coordinate regulation of the exchangers in the tonoplast and plasma membrane.  相似文献   

15.
The zymogen granule (ZG) is the specialized organelle in pancreatic acinar cells for digestive enzyme storage and regulated secretion and has been a model for studying secretory granule functions. In an initial effort to comprehensively understand the functions of this organelle, we conducted a proteomic study to identify proteins from highly purified ZG membranes. By combining two-dimensional gel electrophoresis and two-dimensional LC with tandem mass spectrometry, 101 proteins were identified from purified ZG membranes including 28 known ZG proteins and 73 previously unknown proteins, including SNAP29, Rab27B, Rab11A, Rab6, Rap1, and myosin Vc. Moreover several hypothetical proteins were identified that represent potential novel proteins. The ZG localization of nine of these proteins was further confirmed by immunocytochemistry. To distinguish intrinsic membrane proteins from soluble and peripheral membrane proteins, a quantitative proteomic strategy was used to measure the enrichment of intrinsic membrane proteins through the purification process. The iTRAQ ratios correlated well with known or Transmembrane Hidden Markov Model-predicted soluble or membrane proteins. By combining subcellular fractionation with high resolution separation and comprehensive identification of proteins, we have begun to elucidate zymogen granule functions through proteomic and subsequent functional analysis of its membrane components.  相似文献   

16.
The vacuole of plant cells is a large compartment whose functions (storage, regulation of cytoplasmic homeostasis) have been studied mainly using indirect methods. The recent development of procedures to isolate this organelle enables direct investigation of its properties and of those of its surrounding membrane, the tonoplast. Several problems are encountered when studying the tonoplast: the small quantities of membrane material recovered, the contamination by other membranes, and the lack of an unambiguous marker. This accounts for the scarcity of analytical data concerning this structure. The investigation of transport systems at the tonoplast was stimulated by the existence of a high pH gradient across this membrane and the accumulation of various solutes inside the vacuole (sucrose, organic acids, etc.). Up to now, the most studied system is the proton-pumping ATPase. Its main characteristics are presented, together with a few data on other transport systems.  相似文献   

17.
Toward the storage metabolome: profiling the barley vacuole   总被引:2,自引:0,他引:2  
While recent years have witnessed dramatic advances in our capacity to identify and quantify an ever-increasing number of plant metabolites, our understanding of how metabolism is spatially regulated is still far from complete. In an attempt to partially address this question, we studied the storage metabolome of the barley (Hordeum vulgare) vacuole. For this purpose, we used highly purified vacuoles isolated by silicon oil centrifugation and compared their metabolome with that found in the mesophyll protoplast from which they were derived. Using a combination of gas chromatography-mass spectrometry and Fourier transform-mass spectrometry, we were able to detect 59 (primary) metabolites for which we know the exact chemical structure and a further 200 (secondary) metabolites for which we have strong predicted chemical formulae. Taken together, these metabolites comprise amino acids, organic acids, sugars, sugar alcohols, shikimate pathway intermediates, vitamins, phenylpropanoids, and flavonoids. Of the 259 putative metabolites, some 12 were found exclusively in the vacuole and 34 were found exclusively in the protoplast, while 213 were common in both samples. When analyzed on a quantitative basis, however, there is even more variance, with more than 60 of these compounds being present above the detection limit of our protocols. The combined data were also analyzed with respect to the tonoplast proteome in an attempt to infer specificities of the transporter proteins embedded in this membrane. Following comparison with recent observations made using nonaqueous fractionation of Arabidopsis (Arabidopsis thaliana), we discuss these data in the context of current models of metabolic compartmentation in plants.  相似文献   

18.
Tonoplast intrinsic proteins (TIPs) facilitate the membrane transport of water and other small molecules across the plant vacuolar membrane, and members of this family are expressed in specific developmental stages and tissue types. Delivery of TIP proteins to the tonoplast is thought to occur by vesicle-mediated traffic from the endoplasmic reticulum to the vacuole, and at least two pathways have been proposed, one that is Golgi-dependent and another that is Golgi-independent. However, the mechanisms for trafficking of vacuolar membrane proteins to the tonoplast remain poorly understood. Here we describe a chemical genetic approach to unravel the mechanisms of TIP protein targeting to the vacuole in Arabidopsis seedlings. We show that members of the TIP family are targeted to the vacuole via at least two distinct pathways, and we characterize the bioactivity of a novel inhibitor that can differentiate between them. We demonstrate that, unlike for TIP1;1, trafficking of markers for TIP3;1 and TIP2;1 is insensitive to Brefeldin A in Arabidopsis hypocotyls. Using a chemical inhibitor that may target this BFA-insensitive pathway for membrane proteins, we show that inhibition of this pathway results in impaired root hair growth and enhanced vacuolar targeting of the auxin efflux carrier PIN2 in the dark. Our results indicate that the vacuolar targeting of PIN2 and the BFA-insensitive pathway for tonoplast proteins may be mediated in part by common mechanisms.  相似文献   

19.
IA detergent removal technique was used to reconstitute solubilized tonoplast proteins of mesophyll cells of the CAM plant Kalanchoë daigremontiana into phosphatidylcholine liposomes. The proteoliposomes were able to hydrolyse ATP and to pump protons across the vesicle membrane. Both activities were inhibited by nitrate, an inhibitor of V-type ATPases. Freeze-fracture micrographs confirmed the incorporation of membrane proteins into liposomes. Increase of specific ATP-hydrolysis activity compared to solubilized tonoplast proteins and SDS-PAGE analysis of reconstituted proteins in comparison with the polypeptide pattern of the purified tonoplast H+-ATPase from the same plant source indicated a highly selective reconstitution of the tonoplast H+-ATPase.  相似文献   

20.
The tonoplast H+-ATPase of Acer pseudoplatanus has been purified from isolated vacuoles. After solubilization, the purification procedure included size-exclusion and ion-exchange chromatography. The H+-ATPase consists of at least eight subunits, of 95, 66, 56, 54, 40, 38, 31, and 16 kD, that did not cross-react with polyclonal antibodies raised to the plasmalemma ATPase of Arabidopsis thaliana. The 66-kD polypeptide cross-reacted with monoclonal antibodies raised to the 70-kD subunit of the vacuolar H+-ATPase of oat roots. The functional molecular size of the tonoplast H+-ATPase, analyzed in situ by radiation inactivation, was found to be around 400 kD. The 66-kD subunit of the tonoplast H+-ATPase was rapidly phosphorylated by [[gamma]-32P]ATP in vitro. The complete loss of radio-activity in the 66-kD subunit after a short pulse-chase experiment with unlabeled ATP reflected a rapid turnover, which characterizes a phosphorylated intermediate. Phosphoenzyme formed from ATP is an acylphosphate-type compound as shown by its sensitivity to hydroxylamine and alkaline pH. These results lead us to suggest that the tonoplast H+-ATPase of A. pseudoplatanus is a vacuolar-type ATPase that could operate with a plasmalemma-type ATPase catalytic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号