首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The Yeast Protein Database (YPD) is a database for the proteins of the budding yeast,Saccharomyces cerevisiae. YPD is the first annotated database for the complete proteome of any organism. Now that the complete genome sequence of yeast is available, YPD contains entries for each of the characterized proteins and for each of the uncharacterized proteins predicted from the sequence. Contained in YPD are the calculated properties of each protein such as molecular weight and isoelectric point, experimentally determined properties such as subcellular localization and post-translational modifications, and extensive annotations from the yeast literature. YPD contains 25 000 lines of textual annotation that describe the known functions, mutant phenotypes, interactions, and other properties for the approximately 6000 proteins in the yeast proteome. The information in YPD is updated daily, and it is available on the World Wide Web at http://www.proteome.com/YPDhome.html .  相似文献   

2.
The Yeast Protein Database (YPD) is a curated database for the proteome of Saccharomyces cerevisiae . It consists of approximately 6000 Yeast Protein Reports, one for each of the known or predicted yeast proteins. Each Yeast Protein Report is a one-page presentation of protein properties, annotation lines that summarize findings from the literature, and references. In the past year, the number of annotation lines has grown from 25 000 to approximately 35 000, and the number of articles curated has grown from approximately 3500 to >5000. Recently, new data types have been included in YPD: protein-protein interactions, genetic interactions, and regulators of gene expression. Finally, a new layer of information, the YPD Protein Minireviews, has recently been introduced. The Yeast Protein Database can be found on the Web at http://www.proteome.com/YPDhome. html  相似文献   

3.
Industrial bakers' yeast strain Saccharomyces cerevisiae LH1 was selected for asymmetric reduction of ethyl benzoylacetate to (S)-ethyl 3-hydroxy-3-phenylpropionate. Higher reductive efficiency and higher cofactor availability were obtained with the alternation of cultivation condition (mainly growth medium). Compared to the bioreduction by yeast cells grown in malt extract (ME) medium, the concentration of substrate was increased 25-fold (up to 15.6 g/l) in the yeast peptone dextrose (YPD)-grown cells mediated bioreduction with 97.5% of enantioselective excess of (S)-product. The proteomic responses of S. cerevisiae LH1 cells to growth in aerobic batch cultures fed with either YPD or ME medium were examined and compared. Among the relative quantities of 550 protein spots in each gel, changes were shown in the expression level of 102 intracellular proteins when comparing YPD gel to ME gel. Most of the identified proteins were involved in energy metabolism and several cellular molecular biosynthetic pathway and catabolism. For YPD-grown yeast cells, not only enzymes involved in nicotinamide adenine dinucleotide phosphate regeneration, especially 6-phosphogluconate dehydrogenase, but also alcohol dehydrogenase 1 and D: -arabinose 1-dehydrogenase which had been demonstrated activity toward ethyl benzoylacetate to (S)-hydroxy ester were significantly upregulated. These changes provided us insight in the way the yeast cells adapted to a change in cultivation medium and regulated its catalytic efficiency in the bioreduction.  相似文献   

4.
In Saccharomyces cerevisiae, the SLN1-YPD1-SSK1 phosphorelay system controls a downstream mitogen-activated protein (MAP) kinase in response to hyperosmotic stress. YPD1 functions as a phospho-histidine protein intermediate which is required for phosphoryl group transfer from the sensor kinase SLN1 to the response regulator SSK1. In addition, YPD1 mediates phosphoryl transfer from SLN1 to SKN7, the only other response regulator protein in yeast which plays a role in response to oxidative stress and cell wall biosynthesis.The X-ray structure of YPD1 was solved at a resolution of 2.7 A by conventional multiple isomorphous replacement with anomalous scattering. The tertiary structure of YPD1 consists of six alpha-helices and a short 310-helix. A four-helix bundle comprises the central core of the molecule and contains the histidine residue that is phosphorylated. Structure-based comparisons of YPD1 to other proteins having a similar function, such as the Escherichia coli ArcB histidine-containing phosphotransfer (HPt) domain and the P1 domain of the CheA kinase, revealed that the helical bundle and several structural features around the active-site histidine residue are conserved between the prokaryotic and eukaryotic kingdoms.Despite limited amino acid sequence homology among HPt domains, our analysis of YPD1 as a prototypical family member, indicates that these phosphotransfer domains are likely to share a similar fold and common features with regard to response regulator binding and mechanism for histidine-aspartate phosphoryl transfer.  相似文献   

5.
We develop a probabilistic system for predicting the subcellular localization of proteins and estimating the relative population of the various compartments in yeast. Our system employs a Bayesian approach, updating a protein's probability of being in a compartment, based on a diverse range of 30 features. These range from specific motifs (e.g. signal sequences or the HDEL motif) to overall properties of a sequence (e.g. surface composition or isoelectric point) to whole-genome data (e.g. absolute mRNA expression levels or their fluctuations). The strength of our approach is the easy integration of many features, particularly the whole-genome expression data. We construct a training and testing set of approximately 1300 yeast proteins with an experimentally known localization from merging, filtering, and standardizing the annotation in the MIPS, Swiss-Prot and YPD databases, and we achieve 75 % accuracy on individual protein predictions using this dataset. Moreover, we are able to estimate the relative protein population of the various compartments without requiring a definite localization for every protein. This approach, which is based on an analogy to formalism in quantum mechanics, gives better accuracy in determining relative compartment populations than that obtained by simply tallying the localization predictions for individual proteins (on the yeast proteins with known localization, 92% versus 74%). Our training and testing also highlights which of the 30 features are informative and which are redundant (19 being particularly useful). After developing our system, we apply it to the 4700 yeast proteins with currently unknown localization and estimate the relative population of the various compartments in the entire yeast genome. An unbiased prior is essential to this extrapolated estimate; for this, we use the MIPS localization catalogue, and adapt recent results on the localization of yeast proteins obtained by Snyder and colleagues using a minitransposon system. Our final localizations for all approximately 6000 proteins in the yeast genome are available over the web at: http://bioinfo.mbb.yale. edu/genome/localize.  相似文献   

6.
A critical question among the researchers working on fungal lipid biology is whether the use of an enriched growth medium can affect the lipid composition of a cell and, therefore, contribute to the observed phenotypes. One presumption is that enriched medias, such as YPD (yeast extract, peptone and dextrose), are likely to contain lipids, which may homogenize with the yeast lipids and play a role in masking the actual differences in the observed phenotypes or lead to an altered phenotype altogether. To address this issue, we compared the lipids of Candida albicans, our fungus of interest, grown in YPD or in a defined media such as YNB (yeast nitrogen base). Mass spectrometry-based lipid analyses showed differences in the levels of phospholipids, including phosphatidylinositol, phosphatidylglycerol, lyso-phospholipids; sphingolipids, such as mannosyldiinositolphosphorylceramide; and sterols, such as ergostatetraenol. Significant differences were observed in 70 lipid species between the cells grown in the two media, but the two growth conditions did not affect the morphological characteristics of C. albicans. The lipid profiles of the YNB- and YPD-grown C. albicans cells did vary, but these differences did not influence their response to the majority of the tested agents. Rather, the observed differences could be attributed to the slow growth rate of the Candida cells in YNB compared to YPD. Notably, the altered lipid changes between the two media did impact the susceptibility to some drugs. This data provided evidence that changes in media can lead to certain lipid alterations, which may affect specific pathways but, in general, do not affect the majority of the phenotypic properties of C. albicans. It was determined that either YNB or YPD may be suitable for the growth and lipid analysis of C. albicans, depending upon the experimental requirements, but additional precautions are necessary when correlating the phenotypes with the lipids.  相似文献   

7.
The histidine-containing phosphotransfer (HPt) protein YPD1 is an osmoregulatory protein in yeast that facilitates phosphoryl transfer between the two response regulator domains associated with SLN1 and SSK1. Based on the crystal structure of YPD1 and the sequence alignment of YPD1 with other HPt domains, we site-specifically engineered and purified several YPD1 mutants in order to examine the role of conserved residues surrounding the phosphorylatable histidine (H64). Substitution of the positively charged residues K67 and R90 destabilized the phospho-imidazole linkage, whereas substitution of G68 apparently reduces accessibility of H64. These findings, together with the effect of other mutations, provide biochemical support of the proposed functional roles of conserved amino acid residues of HPt domains.  相似文献   

8.
Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast   总被引:16,自引:0,他引:16  
Haploinsufficiency is defined as a dominant phenotype in diploid organisms that are heterozygous for a loss-of-function allele. Despite its relevance to human disease, neither the extent of haploinsufficiency nor its precise molecular mechanisms are well understood. We used the complete set of Saccharomyces cerevisiae heterozygous deletion strains to survey the genome for haploinsufficiency via fitness profiling in rich (YPD) and minimal media to identify all genes that confer a haploinsufficient growth defect. This assay revealed that approximately 3% of all approximately 5900 genes tested are haploinsufficient for growth in YPD. This class of genes is functionally enriched for metabolic processes carried out by molecular complexes such as the ribosome. Much of the haploinsufficiency in YPD is alleviated by slowing the growth rate of each strain in minimal media, suggesting that certain gene products are rate limiting for growth only in YPD. Overall, our results suggest that the primary mechanism of haploinsufficiency in yeast is due to insufficient protein production. We discuss the relevance of our findings in yeast to human haploinsufficiency disorders.  相似文献   

9.
In Saccharomyces cerevisiae, a branched multistep phosphorelay signaling pathway regulates cellular adaptation to hyperosmotic stress. YPD1 functions as a histidine-phosphorylated protein intermediate required for phosphoryl group transfer from a membrane-bound sensor histidine kinase (SLN1) to two distinct response regulator proteins (SSK1 and SKN7). These four proteins are evolutionarily related to the well-characterized "two-component" regulatory proteins from bacteria. Although structural information is available for many two-component signaling proteins, there are very few examples of complexes between interacting phosphorelay partners. Here we report the first crystal structure of a prototypical monomeric histidine-containing phosphotransfer (HPt) protein YPD1 in complex with its upstream phosphodonor, the response regulator domain associated with SLN1.  相似文献   

10.
Osmoregulation in Saccharomyces cerevisiae involves a multistep phosphorelay system requiring three proteins, SLN1, YPD1, and SSK1, that are related to bacterial two-component signaling proteins, in particular, those involved in regulating sporulation in Bacillus subtilis and anaerobic respiration in Escherichia coli. The SLN1-YPD1-SSK1 phosphorelay regulates a downstream mitogen-activated protein kinase cascade which ultimately controls the concentration of glycerol within the cell under hyperosmotic stress conditions. The C-terminal response regulator domains of SLN1 and SSK1 and full-length YPD1 have been overexpressed and purified from E. coli. A heterologous system consisting of acetyl phosphate, the bacterial chemotaxis response regulator CheY, and YPD1 has been developed as an efficient means of phosphorylating SLN1 and SSK1 in vitro. The homologous regulatory domains of SLN1 and SSK1 exhibit remarkably different phosphorylated half-lives, a finding that provides insight into the distinct roles that these phosphorylation-dependent regulatory domains play in the yeast osmosensory signal transduction pathway.  相似文献   

11.
In Saccharomyces cerevisiae, the histidine-containing phosphotransfer (HPt) protein YPD1 transfers phosphoryl groups between the three different response regulator domains of SLN1, SSK1, and SKN7 (designated R1, R2, and R3, respectively). Together these proteins form a branched histidine-aspartic acid phosphorelay system through which cells can respond to hyperosmotic and other environmental stresses. The in vivo order of phosphotransfer reactions is believed to proceed from SLN1-R1 to YPD1 and then subsequently to SSK1-R2 or SKN7-R3. The individual phosphoryl transfer reactions between YPD1 and the response regulator domains have been examined kinetically. A maximum forward rate constant of 29 s(-)(1) was determined for the reaction between SLN1-R1 approximately P and YPD1 with a K(d) of 1.4 microM for the SLN1-R1 approximately P.YPD1 complex. In the subsequent reactions, phosphotransfer from YPD1 to SSK1-R2 is very rapid (160 s(-)(1)) and is strongly favored over phosphotransfer to SKN7-R3. Phosphotransfer reactions between YPD1 and SLN1-R1 or SKN7-R3 were reversible. In contrast, no reverse transfer from SSK1-R2 approximately P to YPD1 was observed. These findings are consistent with the notion that SSK1 is constitutively phosphorylated under normal osmotic conditions. In addition, we have examined the roles of several conserved amino acid residues surrounding the phosphorylatable histidine (H64) of YPD1 using phosphoryl transfer reactions involving YPD1 mutants. With respect to phosphoryl transfer from SLN1-R1 approximately P, only one YPD1 mutant (K67A) exhibited an increase in K(d) and thus affects binding of YPD1 to SLN1-R1 approximately P, whereas other mutants (R90A, Q86A, and G68Q) showed a decrease in phosphoryl transfer rate. Only the G68Q-YPD1 mutant was significantly affected in phosphotransfer to SSK1-R2 ( approximately 680-fold decrease in rate in comparison to wild-type). This is the first report of a kinetic analysis of a eukaryotic "two-component" histidine-aspartic acid phosphotransfer system, enabling a comparison of the transfer rates and binding constants to the few bacterial systems that have been studied this way.  相似文献   

12.
Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media) on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose) were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH.) produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment) can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.  相似文献   

13.
Common histidine-to-aspartate (His-to-Asp) phosphorelay signaling systems involve three types of signaling components: a sensor His kinase, a response regulator, and a histidine-containing phosphotransfer (HPt) protein. In the fission yeast Schizosaccharomyces pombe, two response regulators, Mcs4 and Prr1, have been identified recently, and it was shown that they are involved in the signal transduction implicated in stress responses. Furthermore, Mcs4 appears to be involved in mitotic cell-cycle control. However, neither the HPt phosphotransmitter nor His kinase has been characterized in S. pombe. In this study, we identified a gene encoding an HPt phosphotransmitter, named Spy1 (S. pombe YPD1-like protein). The spy1(+) gene showed an ability to complement a mutational lesion of the Saccharomyces cerevisiae YPD1 gene, which is involved in an osmosensing signal transduction. The result from yeast two-hybrid analysis indicated that Spy1 interacts with Mcs4. To gain insight into the function of Spy1, a series of genetic analyses were conducted. The results provided evidence that Spy1, together with Mcs4, plays a role in regulation of the G(2)/M cell cycle progression. Spy1-deficient cells appear to be precocious in the entry to M phase. In the proposed model, Spy1 modulates Mcs4 in a negative manner, presumably through a direct His-to-Asp phosphorelay, operating upstream of the Sty1 mitogen-activated protein kinase cascade.  相似文献   

14.
15.
In Saccharomyces cerevisiae, a multi-component phosphorelay signal transduction pathway mediates cellular responses to environmental stress. A histidine-containing phosphotransfer protein, YPD1, represents a bifurcation point between the SLN1-YPD1-SSK1 pathway responsible for osmotic stress responses and the SLN1-YPD1-SKN7 pathway involved in cell wall biosynthesis and cell cycle control. The phosphorelay protein YPD1 must physically interact with and transfer phosphoryl groups between three homologous response regulator domains, designated SLN1-R1, SSK1-R2, and SKN7-R3. In this comparative study, the molecular basis of interaction was examined between YPD1 and each of the three response regulator domains utilizing alanine scanning mutagenesis combined with a yeast two-hybrid assay. Results from the yeast two-hybrid assay indicate that all three response regulator domains bind to a common area, largely hydrophobic in nature, on the surface of YPD1. We postulate that other YPD1 surface residues surrounding this common docking site are involved in making specific interactions with one or more of the response regulator domains.  相似文献   

16.
关凯乐  韩培杰  周森  季方  白逢彦 《菌物学报》2019,38(7):1191-1201
低温大曲是清香型白酒酿造的核心因素之一,为酿造过程提供了物系、酶系和菌系。酵母菌是白酒发酵过程中最重要的功能微生物类群,研究大曲中的酵母菌种类和含量具有重要意义,对大曲质量评价也具有重要参考价值。但用常规酵母菌分离技术和培养基从大曲中分离酵母菌时易受优势丝状真菌(霉菌)的干扰,霉菌常常很快长满培养皿,将酵母菌覆盖,难以对酵母菌进行定量计数、观察和分离纯化。本研究根据酒醅发酵过程中随乙酸和乳酸含量的升高,霉菌含量急剧降低而酵母菌含量逐渐升高的现象,用常规培养基YPD为基础培养基,测试了添加不同量的乙酸、乳酸和丙酸(后者为常用食品防腐和防霉剂),以及不同比例的乙酸乳酸组合物,对低温大曲中霉菌的抑制效果和对酵母菌生长的影响进行探究,发现在灭菌后的YPD中添加3.3mL/L乙酸、2.0mL/L丙酸或在乙酸乳酸1:3的情况下添加2.0mL/L乙酸,30℃培养3-5d之内可有效抑制低温大曲中的霉菌,实现对酵母菌的有效分离、计数和纯化培养,而单加乳酸对霉菌,特别是黄曲霉的抑制效果差。随后测试了以前我们从清香型白酒大曲和酒醅发酵过程中分离的13属18种酵母菌在这些培养基上的生长情况,发现这些酵母菌中的绝大多数,尤其是大曲和酒醅中的优势酵母菌种,均可以在这些加酸培养基上良好生长。综合考虑培养基的成本、配制的简便性及分离效果等因素,本研究推荐将灭菌后添加3.3mL/L乙酸的YPD固体培养基作为低温大曲酵母菌分离和定量计数的优化培养基。  相似文献   

17.
为探讨转萝卜过氧化物酶基因(Rsprx1)提高毕赤酵母(Pichia pastoris)抗盐性机理,用不同浓度NaCl处理转基因酵母GSRP25和野生型酵母GS115,检测菌体生长、相对无机盐含量、过氧化物酶活性和同工酶谱及某些抗性基因表达.实验结果表明,在YPD培养条件下,转基因酵母的过氧化物酶活性和菌体生长速率高于野生型酵母,其过氧化氢酶(CTT1)、热休克蛋白(Hsp12)、Rsprx1基因表达和K+/Na+比值均高于野生型.醛脱氢酶(ALD3)的mRNA表达在两者之间没有差异.在BMMY培养条件下,转基因酵母菌体生长速率和过氧化物酶活性显著高于野生型酵母.因此,转基因酵母通过增加过氧化物酶基因表达提高过氧化物酶活性,改变细胞的某些基因表达和无机盐相对含量,从而提高酵母抗盐能力.  相似文献   

18.
中长链聚羟基脂肪酸酯(mcl-PHA)是一大类由微生物合成的天然生物聚酯,因具有可再生性和生物降解性越来越受到人们的关注。Mcl-PHA可由一些假单胞菌类利用自身的脂肪酸合成途径或β-氧化途径来合成。耶氏解脂酵母具有很好的脂/脂肪酸分解代谢能力,但是它体内缺乏PHA合成酶不能合成mcl-PHA。采用代谢工程策略构建重组解脂酵母,外源表达来自铜绿假单胞菌PAO1(Pseudomonas aeruginosa PAO1)的PHA合成酶。在PHA合成酶的C端添加PTS1过氧化物酶体定位信号序列,使其在过氧化物酶体内发挥功能,并对其编码基因PhaC1进行密码子优化得到oPhaC1。利用pINA1312载体构建表达框,借助载体上的zeta序列元件将oPhaC1基因表达框整合至酵母基因组,完成基因的稳定表达。重组菌PSOC在葡萄糖为唯一碳源的培养基中几乎不产PHA,添加0.5%的油酸时可合成占细胞干重0.67%的mcl-PHA。在含三油酸甘油酯的培养基中发酵72h产生1.51% mcl-PHA(wt%)。实验结果充分证明重组解脂酵母作为有潜力的微生物细胞工厂可以用于生产mcl-PHA,也为将来利用富含油脂和其他营养的餐厨垃圾水解液等廉价资源生产mcl-PHA打下基础。  相似文献   

19.
Here we present the Coon OMSSA Proteomic Analysis Software Suite (COMPASS): a free and open-source software pipeline for high-throughput analysis of proteomics data, designed around the Open Mass Spectrometry Search Algorithm. We detail a synergistic set of tools for protein database generation, spectral reduction, peptide false discovery rate analysis, peptide quantitation via isobaric labeling, protein parsimony and protein false discovery rate analysis, and protein quantitation. We strive for maximum ease of use, utilizing graphical user interfaces and working with data files in the original instrument vendor format. Results are stored in plain text comma-separated value files, which are easy to view and manipulate with a text editor or spreadsheet program. We illustrate the operation and efficacy of COMPASS through the use of two LC-MS/MS data sets. The first is a data set of a highly annotated mixture of standard proteins and manually validated contaminants that exhibits the identification workflow. The second is a data set of yeast peptides, labeled with isobaric stable isotope tags and mixed in known ratios, to demonstrate the quantitative workflow. For these two data sets, COMPASS performs equivalently or better than the current de facto standard, the Trans-Proteomic Pipeline.  相似文献   

20.
Summary The entomopathogenic fungus,Beauveria bassiana, produces an extracellular lipase when grown on a yeast extract-peptone-dextrose broth (YPD) medium. The time course of lipase production in the presence of olive oil was studied and which was shown to induce lipase. The addition of fatty acids, such as, myristic, palmitic, stearic, oleic, linoleic and arachidic acids, inhibited both growth and lipase production. Lipase production was also assessed on YPD and glucose minimal salts (GMS) medium. The addition of olive oil increased the lipase induction much more on, YPD than on the GMS. The effect of the divalent metal ions; iron, copper and magnesium, on lipase activity was studied. Whereas the iron and copper inhibited lipase activity, magnesium slightly increased lipase activity. Compounds containing a hydrolyzable ester group, such as Tweens, were found to inhibit lipase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号