首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Large culture collections of microalgae and cyanobacteria such as the Coimbra Collection of Algae (ACOI) hold unialgal cultures consisting of a population of cells/colonies of a certain species. These cultures are usually non-axenic, as other organisms such as bacteria and microfungi are also present in culture due to co-isolation. Attention has been recently given to partner organisms since studies indicate that some bacteria are important for nutrient uptake of the algal cells, acting as simbionts. Despite this benign effect in the actively growing cultures, when cryopreservation is applied for inactive-stage storage, these organisms may recover faster than the algae, thus affecting their recovery and the viability assessments. In this study, a set of mucilaginous ACOI microalgae were selected, cell features known for their relevance in cryopreservation success were recorded and simple two-step cryopreservation tests were applied. Thawed samples were transferred to fresh culture medium for recovery. Viability was assessed and partner organism proliferation (pop) was recorded. Results were analyzed by t-tests. Statistical models allowed us to support the known tendency for small, unicellular algae with no outer structures to be successfully cryopreserved and the negative effect of vacuoles in the cell prior to cryopreservation. On average cryopreservation with MeOH or Me2SO led to the recovery of nearly half the cells. It was found that the cryoprotection step with MeOH is when pop is triggered and that the use of Me2SO can prevent this effect. Progress on understanding the cultured consortia will assist the improvement of cryopreservation and research using microalgal cultures.  相似文献   

2.
M A Brock  W H Adler 《Cryobiology》1989,26(3):256-264
The physiological status of donor organisms is an often overlooked factor in cryopreservation experiments. Murine splenic lymphocytes exhibit systematic changes in function which are endogenous and influence recoveries of viable and functional frozen-thawed cells over the life span of mice. One of these changes is the decline in the performance of unfrozen cells as organisms age. Superimposed on the age-related decline in lymphocyte functions are circannual rhythms in T- and B-cell mitogenesis, and the properties of these rhythms also change with age. Splenocytes from young, 15-month-old and 23- to 27-month-old C57BL/6 mice were cryopreserved and tested for recovery of mitogenic responses to activation by the T-cell mitogens, phytohemagglutinin and concanavalin A, and the B-cell mitogen, lipopolysaccharide. Tritiated thymidine incorporation by activated, dividing cells was determined after 72 hr of in vitro culture. Seasonal patterns in recovery of viable and functional cryopreserved cells from young mice resembled those of their unfrozen controls (6). By 15 months of age, the responses after freeze-thaw stress decreased to the levels observed for cells obtained from senescent mice, and seasonal patterns were no longer observed. In these middle-aged mice, intracellular changes in lymphocytes that are equivalent to those in senescent animals resulted in irreparable structural-functional injury during cryopreservation.  相似文献   

3.
Chemicals are a frequent means whereby organisms defend themselves against predators, competitors, parasites, microbes, and other potentially harmful organisms. Much progress has been made in understanding how a phylogenetic diversity of organisms living in a variety of environments uses chemical defenses. Chief among these advances is determining the molecular identity of defensive chemicals and the roles they play in shaping interactions between individuals. Some progress has been made in deciphering the molecular, cellular, and systems level mechanisms underlying these interactions, as well as how these interactions can lead to structuring of communities and even ecosystems. The neuroecological approach unifies practices and principles from these diverse disciplines and at all scales as it attempts to explain in a single conceptual framework the abundances of organisms and the distributions of species within natural habitats. This article explores the neuroecology of chemical defenses with a focus on aquatic organisms and environments. We review the concept of molecules of keystone significance, including examples of how saxitoxin and tetrodotoxin can shape the organization and dynamics of marine and riparian communities, respectively. We also describe the current status and future directions of a topic of interest to our research group-the use of ink by marine molluscs, especially sea hares, in their defense. We describe a diversity of molecules and mechanisms mediating the protective effects of sea hares' ink, including use as chemical defenses against predators and as alarm cues toward conspecifics, and postulate that some defensive molecules may function as molecules of keystone significance. Finally, we propose future directions for studying the neuroecology of the chemical defenses of sea hares and their molluscan relatives, the cephalopods.  相似文献   

4.
Filamentous members of the phylum Actinobacteria are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacterium Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide but half of its putative BGCs are still orphan. Although previous studies have used marine heterotrophs to induce orphan BGCs in Salinispora, its co-culture with marine phototrophs has yet to be investigated. Following the observation of an antimicrobial activity against a range of phytoplankton by S. tropica, we here report that the photosynthate released by photosynthetic primary producers influences its biosynthetic capacities with production of cryptic molecules and the activation of orphan BGCs. Our work, using an approach combining metabolomics and proteomics, pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from marine actinobacteria.  相似文献   

5.
The development of cryopreservation methods for embryonic cells and larvae of sea animals offers a great potential for marine biotechnology. Larval cells of bivalves and sea urchins were frozen to −196 °C using traditional cryoprotectants (Me2SO and trehalose) and the cryoprotective mixture developed by us. In addition to Me2SO and trehalose, this mixture contained an exogenous lipid extract from mussel tissues and antioxidants. A positive effect of antioxidants (α-tocopherol acetate, ascorbic acid or echinochrome, the quinoid pigment of sea urchins) on cell viability became significant only in the presence of exogenous lipids. Antioxidants added to cryoprotective mixtures did not reveal visible cryoprotective activity when used separately. To better understand the mechanism of the protective effect of exogenous lipids on cell membranes of sea animals, a comparative analysis of the fatty acid (FA) composition of total lipids in larval cells before and after freezing was carried out using a gas–liquid chromatography. The results indicate that freezing–thawing has direct effects on the FA composition of major lipid classes in marine invertebrate cells, and these effects can vary depending on the provenance of the cells. We have found that (I) both cell viability and the FA profile of cell lipids after cryopreservation depend on the cryoprotectants used; (II) an amount of saturated, monoenic and polyenic FAs changes significantly after cryopreservation. We assume that the addition of the exogenous lipid extract in form of liposomes could promote a renewal of disturbance areas and prevent from membrane damages during freezing–thawing.  相似文献   

6.
Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)‐derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre‐labeled neural cells, especially in three‐dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC‐derived multicellular NPC aggregates labeled with micron‐sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70–80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post‐cryopreservation. MRI analysis showed comparable detectability for the MPIO‐labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO‐labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:510–521, 2015  相似文献   

7.
Knowledge on long-term preservation of micro-organisms is limited and research in the field is scarce despite its importance for microbial biodiversity and biotechnological innovation. Preservation of fastidious organisms such as methane-oxidizing bacteria (MOB) has proven difficult. Most MOB do not survive lyophilization and only some can be cryopreserved successfully for short periods. A large-scale study was designed for a diverse set of MOB applying fifteen cryopreservation or lyophilization conditions. After three, six and twelve months of preservation, the viability (via live-dead flow cytometry) and culturability (via most-probable number analysis and plating) of the cells were assessed. All strains could be cryopreserved without a significant loss in culturability using 1% trehalose in 10-fold diluted TSB (TT) as preservation medium and 5% DMSO as cryoprotectant. Several other cryopreservation and lyophilization conditions, all of which involved the use of TT medium, also allowed successful preservation but showed a considerable loss in culturability. We demonstrate here that most of these non-culturables survived preservation according to viability assessment indicating that preservation induces a viable but non-culturable (VBNC) state in a significant fraction of cells. Since this state is reversible, these findings have major implications shifting the emphasis from survival to revival of cells in a preservation protocol. We showed that MOB cells could be significantly resuscitated from the VBNC state using the TT preservation medium.  相似文献   

8.
The use of mysid shrimp, particularly the genusMysidopsis, along with specific testing procedures, has become accepted in aquatic toxicology. Investigators have developed methodologies for both culture and testing of these organisms. Acute and chronic (life cycle) toxicity tests in addition to dredge spoil and effluent tests with mysids are now becoming common. Attempts have been made to use mysids as test organisms in behavioral, physiological, nutritional, and food-chain studies. In general,Mysidopsis spp. have been shown to be as sensitive or more sensitive to toxic substances than other marine species tested. The ease of handling and culture, relative sensitivity to toxicants, short life cycle, small size and direct larval development make these organisms desirable for research purposes. Continued research using mysid species will probably demonstrate even greater usefulness of these organisms in assessment of pollutant impacts on estuarine or marine communities.  相似文献   

9.
Despite a vast amount of different methods, protocols and cryoprotective agents (CPA), stem cells are often frozen using standard protocols that have been optimized for use with cell lines, rather than with stem cells. Relatively few comparative studies have been performed to assess the effects of cryopreservation methods on these stem cells. Dimethyl sulfoxide (DMSO) has been a key agent for the development of cryobiology and has been used universally for cryopreservation. However, the use of DMSO has been associated with in vitro and in vivo toxicity and has been shown to affect many cellular processes due to changes in DNA methylation and dysregulation of gene expression. Despite studies showing that DMSO may affect cell characteristics, DMSO remains the CPA of choice, both in a research setting and in the clinics. However, numerous alternatives to DMSO have been shown to hold promise for use as a CPA and include albumin, trehalose, sucrose, ethylene glycol, polyethylene glycol and many more. Here, we will discuss the use, advantages and disadvantages of these CPAs for cryopreservation of different types of stem cells, including hematopoietic stem cells, mesenchymal stromal/stem cells and induced pluripotent stem cells.  相似文献   

10.
The genetic resources of aquatic biomedical model organisms are the products of millions of years of evolution, decades of scientific development, and hundreds of millions of dollars of research funding investment. Genetic resources (e.g., specific alleles, transgenes, or combinations) of each model organism can be considered a form of scientific wealth that can be accumulated and exchanged, typically in the form of live animals or germplasm. Large-scale maintenance of live aquatic organisms that carry these genetic resources is inefficient, costly, and risky. In situ maintenance may be substantially enhanced and backed up by combining cryopreserved germplasm repositories and genetic information systems with live animal culture. Unfortunately, cryopreservation has not advanced much beyond the status of an exploratory research for most aquatic species, lacks widespread application, and methods for successful cryopreservation remain poorly defined. For most aquatic species biological materials other than sperm or somatic cells are not comprehensively banked to represent and preserve a broad range of genetic diversity for each species. Therefore, new approaches and standardization are needed for repository-level application to ensure reproducible recovery of cryopreserved materials. Additionally, development of new technologies is needed to address preservation of novel biological materials, such as eggs and embryos of aquatic species. To address these goals, the Office of Research Infrastructure Programs (ORIP) of the National Institutes of Health (NIH) hosted the Cryopreservation of Aquatic Biomedical Models Workshop on January 7 to 8, 2017, in conjunction with the 8th Aquatic Animal Models of Human Disease Conference in Birmingham, Alabama. The goals of the workshop were to assess the status of germplasm cryopreservation in various biomedical aquatic models and allow representatives of the scientific community to develop and prioritize a consensus of specific actionable recommendations that will move the field of cryopreservation of aquatic resources forward. This workshop included sessions devoted to new approaches for cryopreservation of aquatic species, discussion of current efforts and approaches in preservation of aquatic model germplasm, consideration of needs for standardization of methods to support reproducibility, and enhancement of repository development by establishment of scalable high-throughput technologies. The following three broad recommendations were forwarded from workshop attendees:1Establish a comprehensive, centralized unit (“hub”) to programmatically develop training for and documentation of cryopreservation methods for aquatic model systems. This would include development of species-specific protocols and approaches, outreach programs, community development and standardization, freezing services and training of the next generation of experts in aquatic cryopreservation.2Provide mechanisms to support innovative technical advancements that will increase the reliability, reproducibility, simplicity, throughput, and efficiency of the cryopreservation process, including vitrification and pipelines for sperm, oocytes, eggs, embryos, larvae, stem cells, and somatic cells of all aquatic species. This recommendation encompasses basic cryopreservation knowledge and engineering technology, such as microfluidics and automated processing technologies.3Implement mechanisms that allow the various aquatic model stock centers to increase their planning, personnel, ability to secure genetic resources and to promote interaction within an integrated, comprehensive repository network for aquatic model species repositories.  相似文献   

11.
The development of cryoconservation methods for the long-term storage of algal cultures is important for the ex situ preservation of biological diversity and the maintenance of genetic stability within this group of important organisms. However, as many unicellular algae are recalcitrant to cryogenic storage, this study aims to evaluate the role of oxidative stress in cryoinjury. A non-invasive, non-destructive assay method previously applied to animal cells has been developed to evaluate free radical mediated oxidative stress in Euglena gracilis exposed to different cryopreservation treatments. The procedure employs dimethyl sulphoxide as a probe for the hydroxyl radical. Adopting this approach it was possible to identify those components of the cryopreservation protocol which were the most damaging. These were identified as preparative centrifugation and sub-zero freezing treatments. Poststorage survival in E. gracilis was significantly (P < 0.05) enhanced when the chelating agent desferrioxamine was included in the recovery medium whilst methane production was significantly (P < 0.004) reduced, suggesting that the additive was capable of ameliorating oxidative stress. The potential of using novel, exogenous antioxidant treatments developed for medical applications and applying them to enhance cryopreservation tolerance in recalcitrant unicellular algae is discussed.  相似文献   

12.
We have isolated cells of unculturable radiolarians from marine coastal waters. Individual cells were subjected to single cell whole genome amplification (SCWGA) and gene-targeted PCR. Using this approach we recover a surprisingly large diversity of sequences related to the enigmatic marine alveolate groups 1 and 2 (MALV I and MALV II) that most likely represent intracellular symbionts or parasites of the radiolarian cells. 18S rDNA phylogeny of the MALV sequences reveals 4 distinct clades of radiolarian associates here named Radiolarian Associated Sequences (RAS) 1-4. One clade of both phaeodarian and radiolarian associates and one clade of only phaeodarian associates are also identified. The MALV sequences cluster according to host type, i.e. sequences from associates identified in radiolarians, fish, copepods, ciliates or dinoflagellates are not intermixed but separated into distinct clades. This implies several independent colonizations of host lineages and links a large diversity of MALV to radiolarian-associated species. This demonstrates that radiolarians may be an important reservoir for MALV, making them a key group for understanding the impact of intracellular symbionts on the marine ecosystem. This study shows that applying SCWGA on unculturable cells is a promising approach to study the vast diversity and interactions of intracellular eukaryote organisms.  相似文献   

13.
Diz AP  Dudley E  Skibinski DO 《Proteomics》2012,12(12):1949-1956
Proteomic analysis on sperm has been restricted to only a few model organisms. We present here a 2DE PAGE proteome map of sperm cells from a nonmodel organism, the marine mussel Mytilus edulis, a free-spawning marine invertebrate with external fertilization. Ninety-six protein spots showing high expression were selected and of these 77 were successfully identified by nESI-MS analysis. Many of the identifications are relevant to sperm cell physiology and mtDNA functioning. The results and proteomics approach used are discussed in relation to their potential for advancing understanding of the unusual system of mtDNA inheritance described in Mytilus spp., and for the testing of evolutionary hypotheses pertaining to the role of fertilization in the speciation process.  相似文献   

14.
Amniotic epithelial cells are a promising source for stem cell-based therapy through their potential capacity to differentiate into the cell lineages of all three germ layers. Long-term preservation is necessary to have a ready-to-use source of stem cells, when required. Reduced differentiation capability, decrease of viability and use of fetal bovine serum (FBS) are three drawbacks of clinical application of cryopreserved stem cells. In this study, we used human amniotic fluid instead of animal serum, and evaluated viability and multipotency of amniotic epithelial cells after cryopreservation in suspension and compared with those cryopreserved on their natural scaffold (in situ cryopreservation). There was no significant difference in viability of the cells cryopreserved in amniotic fluid and FBS. Also, the same results were achieved for expression of pluripotency marker OCT-4 when FBS was replaced by amniotic fluid in the samples with the same cryoprotectant. The cells cryopreserved in presence of scaffold had a higher level of viability compared to the cells cryopreserved in suspension. Although, the number of the cells expressed OCT-4 significantly decreased within cryopreservation in suspension, no decrease in expression of OCT-4 was observed when the cells cryopreserved with their natural scaffold. Upon culturing of post-thawed cells in specific lineage differentiating mediums, the markers of neuronal, hepatic, cardiomyocytic and pancreatic were found in differentiated cells. These results show that replacement of FBS by amniotic fluid and in situ cryopreservation of amniotic epithelial cells is an effective approach to overcome limitations related to long-term preservation including differentiation during cryopreservation and decrease of viability.  相似文献   

15.
Marine biotoxins synthesized by Harmful Algal Blooms (HABs) represent one of the most important sources of contamination in marine environments as well as a serious threat to fisheries and aquaculture-based industries in coastal areas. Among these biotoxins Okadaic Acid (OA) is of critical interest as it represents the most predominant Diarrhetic Shellfish Poisoning biotoxin in the European coasts. Furthermore, OA is a potent tumor promoter with aneugenic and clastogenic effects on the hereditary material, most notably DNA breaks and alterations in DNA repair mechanisms. Therefore, a great effort has been devoted to the biomonitoring of OA in the marine environment during the last two decades, mainly based on physicochemical and physiological parameters using mussels as sentinel organisms. However, the molecular genotoxic effects of this biotoxin make chromatin structure a good candidate for an alternative strategy for toxicity assessment with faster and more sensitive evaluation. To date, the development of chromatin-based studies to this purpose has been hampered by the complete lack of information on chromatin of invertebrate marine organisms, especially in bivalve molluscs. Our preliminary results have revealed the presence of histone variants involved in DNA repair and chromatin specialization in mussels and clams. In this work we use this information to put forward a proposal focused on the development of chromatin-based tests for OA genotoxicity in the marine environment. The implementation of such tests in natural populations has the potential to provide an important leap in the biomonitoring of this biotoxin. The outcome of such monitoring may have critical implications for the evaluation of DNA damage in these marine organisms. They will provide as well important tools for the optimization of their harvesting and for the elaboration of additional tests designed to evaluate the safety of their consumption and potential implications for consumer's health.  相似文献   

16.
Planctomycetes are ubiquitous in marine environment and were reported to occur in association with multicellular eukaryotic organisms such as marine macroalgae and invertebrates. Here, we investigate planctomycetes associated with the marine sponge Niphates sp. from the sub-tropical Australian coast by assessing their diversity using culture-dependent and -independent approaches based on the 16S rRNA gene. The culture-dependent approach resulted in the isolation of a large collection of diverse planctomycetes including some novel lineages of Planctomycetes from the sponge as well as sediment and seawater of Moreton Bay where this sponge occurs. The characterization of these novel planctomycetes revealed that cells of one unique strain do not possess condensed nucleoids, a phenotype distinct from other planctomycetes. In addition, a culture-independent clone library approach identified unique planctomycete 16S rRNA gene sequences closely related to other sponge-derived sequences. The analysis of tissue of the sponge Niphates sp. showed that the mesohyl of the sponge is almost devoid of microbial cells, indicating this species is in the group of ‘low microbial abundant’ (LMA) sponges. The unique planctomycete 16S rRNA gene sequences identified in this study were phylogenetically closely related to sequences from LMA sponges in other published studies. This study has revealed new insights into the diversity of planctomycetes in the marine environment and the association of planctomycetes with marine sponges.  相似文献   

17.
It is now well known that many marine organisms use low-molecular volatile substances as signals, in order to coordinate activities between different individuals. The study of such pheromones requires the isolation and enrichment of the secretions from undisturbed living cells or organisms over extended periods of time. The Grob-Hersch extraction device, which we describe here, avoids adverse factors for the biological materials such as strong water currents, rising gas bubbles or chemical solvents. Furthermore, the formation of sea-water spray is greatly reduced. The application of this technique for the isolation of pheromones of marine algae and animals is described.  相似文献   

18.
Cryopreservation causes several types of damage to spermatozoa, such as loss of plasma membrane integrity and functionality, loss of motility, and ATP content, resulting in decrease of fertility rates. This spermatozoal damage has been widely investigated for several marine and freshwater fish species. However, not much attention has been paid to the nuclear DNA. The objective of this study was to determine the degree to which cryopreservation induces spermatozoal DNA damage in two commercially cultured species, rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata), both of which could benefit from the development of cryopreservation strategies on a large scale. We have used the single-cell gel electrophoresis, commonly known as Comet assay to detect strand breaks in DNA. This technique was performed on fresh and cryopreserved sperm from both species. In rainbow trout there was a significant increase in the averages of fragmented DNA and Olive tail moment after cryopreservation (11.19-30.29% tail DNA and 13.4-53.48% Olive tail moment in fresh and cryopreserved sperm, respectively), as well as in the proportion of cells with a high percentage of DNA fragmentation. For gilthead sea bream there were no significant differences in the percentage of tail DNA between the control samples and sperm diluted 1:6 and cryopreserved (28.23 and 31.3% DNA(t), respectively). However, an increase in the sperm dilution rate produced an increase in the percentage of DNA fragmentation (41.4%). Our study demonstrates that cryopreservation can induce DNA damage in these species, and that this fact should be taken into account in the evaluation of freezing/thawing protocols, especially when sperm cryopreservation will be used for gene bank purposes.  相似文献   

19.
Human embryonic stem cells (hESC) hold tremendous potential in the emerging fields of gene and cell therapy as well as in basic scientific research. One of the major challenges regarding their application is the development of efficient cryopreservation protocols for hESC since current methods present poor recovery rates and/or technical difficulties which impair the development of effective processes that can handle bulk quantities of pluripotent cells. The main focus of this work was to compare different strategies for the cryopreservation of adherent hESC colonies. Slow‐rate freezing protocols using intact hESC colonies was evaluated and compared with a surface‐based vitrification approach. Entrapment within ultra‐high viscous alginate was investigated as the main strategy to avoid the commonly observed loss of viability and colony fragmentation during slow‐rate freezing. Our results indicate that entrapment beneath a layer of ultra‐high viscous alginate does not provide further protection to hESC cryopreserved through slow‐rate freezing, irrespectively of the cryomedium used. Vitrification of adherent hESC colonies on culture dishes yielded significantly higher recovery rates when compared to the slow‐rate freezing approaches investigated. The pluripotency of hESC was not changed after a vitrification/thawing cycle and during further propagation in culture. In conclusion, from the cryopreservation methods investigated in this study, surface‐based vitrification of hESC has proven to be the most efficient for the cryopreservation of intact hESC colonies, reducing the time required to amplify frozen stocks thus supporting the widespread use of these cells in research and clinical applications. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1079–1087, 2012  相似文献   

20.
The establishment of cell lines from marine invertebrates has been encountered with obstacles. Contrary to insects and arachnids where the development of a variety of cell lines has become routine, there is no single established cell line from marine invertebrates. This review examines the activity in the field of marine invertebrate cell cultures within the last decade (1988–1998). During this period, attempts (90 peer reviewed studies in addition to many other abstracts, chapters in books, symposia presentations and reports) were limited to a few species within only six phyla (Porifera, Cnidaria, Crustacea, Mollusca, Echinodermata, Urochordata; in addition to freshwater/terrestrial annelids and platyhelminths). These studies which are summarized here, on one hand indicated ubiquitous problems and on the other, unique characterizations to each phylum studied. Only one-third of the studies revealed cultures of 1 month or longer but most of these were long-term cultures found or suspiciously considered to be contaminated by other unicellular eukaryotic organisms, mainly by thraustochytrids. Three unique approaches/obstacles for marine invertebrate cell cultures (source of cell, cryopreservation and eukaryotic contaminants) are further discussed. The overall impact of recent improvements and developed protocols raises the suggestion for testing different, novel routes in the establishment of cell cultures from marine invertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号