首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of oocyte physiology to improve cryopreservation procedures   总被引:4,自引:0,他引:4  
In contrast to the preimplantation mammalian embryo, it has been notoriously difficult to cryopreserve the metaphase II oocyte. The ability to store oocytes successfully at -196 degrees C has numerous practical and financial advantages, together with ethical considerations, and will positively impact animal breeding programs and assisted conception in the human. Differences in membrane permeability and in physiology are two main reasons why successful oocyte cryopreservation has remained elusive. It is proposed, therefore, that rather than relying on technologies already established for the preimplantation embryo, the development of cryopreservation techniques suitable for the mammalian oocyte needs to take into account the idiosyncratic physiology of this cell. Analysis of intracellular calcium, for example, has revealed that exposure to conventional permeating cryoprotectants, such as propanediol, ethylene glycol and DMSO, all independently result in an increase in calcium, which in turn has the potential to initiate oocyte activation, culminating in zona hardening. Quantification of the metabolome and proteome of the oocyte has revealed that whereas slow freezing has a dramatic effect on cell physiology, vitrification appears to have limited effect. This is plausibly achieved by the limited exposure to cryoprotectants. Analysis of meiotic spindle dynamics and embryo development following IVF, also indicate that vitrification is less traumatic than slow freezing, and therefore has the greatest potential for successful oocyte cryopreservation.  相似文献   

2.
Infertility is a commonly encountered situation occurring equally in both sexes. In vitro fertilization and embryo transfer (IVF-ET) and other assisted reproductive technologies (ARTs) have enhanced the possibilities for successful treatment to tackle infertility. However, ARTs currently face limitations due to the fact that although success rate is high for the initial stages such as ovulation induction and fertilization, it dwindles progressively so that the success rate of a take home baby is as low as 15-20%. Research centred around various stages in an IVF programme is therefore necessary to devise protocols that ensure a higher success rate. This review takes a look at the potential areas currently under research in the field of ARTs, such as, in vitro oocyte maturation, oocyte/embryo cryopreservation, embryo culture, preimplantation genetic diagnosis. Their applications, in clinical conditions such as cancer, have been discussed.  相似文献   

3.
Zhang Y  Yang Z  Wu J 《The FEBS journal》2007,274(17):4349-4359
The mammalian preimplantation embryo is a critical and unique stage in embryonic development. This stage includes a series of crucial events: the transition from oocyte to embryo, the first cell divisions, and the establishment of cellular contacts. These events are regulated by multiple signal-transduction pathways. In this article we describe patterns of stage-specific expression in several signal-transduction pathways and try to give a profile of the signaling transduction network in preimplantation development of mammalian embryo.  相似文献   

4.
It is generally accepted that mammalian preimplantation embryos are sensitive to their environment and that conditions of culture can affect future growth and developmental potential both pre- and postnatally. Evidence suggests that while culture conditions during bovine in vitro embryo production can impact somewhat on the developmental potential of the early embryo, the intrinsic quality of the oocyte is the key factor determining the proportion of oocytes developing to the blastocyst stage. In addition, evidence suggests that the period of post fertilization embryo culture is the most critical period affecting blastocyst quality assessed in terms of cryotolerance, gene expression pattern and ability to establish a pregnancy. This paper reviews the current literature, with emphasis on the bovine model, demonstrating evidence for an effect of post fertilization culture environment on embryo gene expression and quality.  相似文献   

5.
6.
Oocyte mitochondrial dysfunction has been proposed as a cause of high levels of developmental retardation and arrest that occur in human preimplantation embryos generated using assisted reproductive technology in the treatment of some causes of female infertility. To investigate this, a model of mitochondrial dysfunction was developed in mouse oocytes using a method of photosensitization of the mitochondrion-specific dye, rhodamine-123. After in vitro fertilization, dye-loaded and photosensitized oocytes showed developmental arrest in proportion to irradiation time. Morphological and metabolic assessments of zygotes indicated an increase in mitochondrial permeability that subsequently resulted in apoptotic degeneration. Development was partially restored by inhibition of mitochondrial permeability transition pore formation by oocyte pretreatment with cyclosporin A. Oocyte mitochondria are therefore physiological regulators of early embryo development and potential sites of pathological insult that may perturb oocyte and subsequent preimplantation embryo viability. These findings have important implications for the treatment of clinically infertile women using assisted reproductive technologies.  相似文献   

7.
The given paper summarizes the data on the early mammalian embryo development in culture media containing low oxygen concentration. Experimental results on in vitro modeling the hypoxia for preimplantation development are reviewed. Hypoxic conditions were shown to be available in the female reproductive tract of different mammalian species. The estimation of the embryo developing in vitro exhibits that lower oxygen level in culture media improves embryonic quality.  相似文献   

8.
The preimplantation development of the mammalian embryo encompasses a series of critical events: the transition from oocyte to embryo, the first cell divisions, the establishment of cellular contacts, the first lineage differentiation-all the first subtle steps toward a future body plan. Here, we use microarrays to explore gene activity during preimplantation development. We reveal robust and dynamic patterns of stage-specific gene activity that fall into two major phases, one up to the 2-cell stage (oocyte-to-embryo transition) and one after the 4-cell stage (cellular differentiation). The mouse oocyte and early embryo express components of multiple signaling pathways including those downstream of Wnt, BMP, and Notch, indicating that conserved regulators of cell fate and pattern formation are likely to function at the earliest embryonic stages. Overall, these data provide a detailed temporal profile of gene expression that reveals the richness of signaling processes in early mammalian development.  相似文献   

9.
During the periovulatory period, the induction of prostaglandin G/H synthase-2 (PTGS2) expression in cumulus cells and associated prostaglandin E2 (PGE2) production are implicated in the terminal differentiation of the cumulus-oocyte complex. During the present study, the effects of the PTGS2/PGE2 pathway on the developmental competence of bovine oocytes were investigated using an in vitro model of maturation, fertilization, and early embryonic development. The specific inhibition of PTGS2 activity with NS-398 during in vitro maturation (IVM) significantly restricted mitogen-activated protein kinase (MAPK) activation in oocytes at the germinal vesicle breakdown stage and reduced both cumulus expansion and the maturation rate after 22 h of culture. In addition, significantly higher rates of abnormal meiotic spindle organization were observed after 26 h of culture. Periconceptional PTGS2 inhibition did not affect fertilization but significantly reduced the speed of embryo development. Embryo output rates were significantly decreased on Day 6 postfertilization but not on Day 7. However, total blastomere number was significantly lower in embryos obtained after PTGS2 inhibition. The addition of PGE2 to IVM and in vitro fertilization cultures containing NS-398 overrode oocyte maturation and early embryonic developmental defects. Protein and mRNA expression for the prostaglandin E receptor PTGER2 were found in oocytes, whereas the PTGER2, PTGER3, and PTGER4 subtypes were expressed in cumulus cells. This study is the first to report the involvement of PGE2 in oocyte MAPK activation during the maturation process. Taken together, these results indicate that PGE2-mediated interactions between somatic and germ cells during the periconceptional period promote both in vitro oocyte maturation and preimplantation embryonic development in cattle.  相似文献   

10.
Gardner DK 《Theriogenology》1998,49(1):83-102
Along with the transition from maternal to embryonic genome control the mammalian preimplantation embryo undergoes significant changes in its physiology during development. Concomitant with these changes are altering patterns of nutrient uptake and differences in the subsequent fate of such nutrients. The most significant nutrients to the developing mammalian preimplantation embryo are carbohydrates and amino acids, which serve not only to provide energy but also to maintain embryo function by preventing cellular stress induced by suboptimal culture conditions in vitro. It is subsequently proposed that optimal development of the mammalian embryo in culture requires the use of two or more media, each designed to cater for the changing requirements of the embryo. Importantly, culture conditions that maintain the early embryo are not ideal for the embryo post-compaction, and conditions that support excellent development and differentiation of the blastocyst can actually be inhibitory to the zygote. A marker of in vitro-induced cellular stress to the embryo is the relative activity of the metabolic pathways used to generate energy for development. Quantification of embryo energy metabolism may therefore serve as a valuable marker of embryo development and viability.  相似文献   

11.
Fertilization in vivo requires a complex series of selection events to occur in order to guarantee that only the fittest gametes take part in the fusion process and give rise to a viable embryo. Conventional practice in bovine in vitro fertilization however is to select oocytes and sperm by quite crude procedures. It is therefore not inconceivable that essentially unfit gametes may drive aberrant embryo development in vitro. Abnormal embryonic cells are being removed by apoptosis, which is a physiological process in embryos. Only an excess or a lack of apoptosis can lead to embryonic death or abnormal development. Suboptimal culture conditions undoubtedly contribute to undue embryonic apoptosis, but the intrinsic quality of the oocyte may also be a causative factor. It is generally accepted that the oocyte is in control of early embryogenesis, but is it also in control of future embryonic suicide? Is a compromised follicular environment predestining the oocyte to a dire fate? What is the contribution of the cumulus cells to oocyte quality, and can they rescue it from early demise? And what can be said about the origin of the spermatozoa? Research in human in vitro fertilization has definitely shown that factors such as paternal age, smoking and other sperm stressors can contribute to abnormal embryo development and even diseased offspring. This review will address the questions raised above, and will describe what is known about the cellular and molecular biology that may account for abnormal bovine embryo development caused by gamete origin.  相似文献   

12.
Effects of maternal age on oocyte developmental competence   总被引:5,自引:0,他引:5  
Armstrong DT 《Theriogenology》2001,55(6):1303-1322
The widespread use of a variety of assisted reproductive technologies has removed many of the constraints that previously restricted mammalian reproduction to the period between onset of puberty and reproductive senescence. In vitro embryo production systems now allow oocytes from very young animals to undergo fertilization and form embryos capable of development to normal offspring, albeit at somewhat reduced efficiencies compared to oocytes from adult females. They also can overcome infertility associated with advanced age of animals and women. This review examines oocyte developmental competence as the limiting factor in applications of assisted reproductive technologies for both juvenile and aged females. Age of oocyte donor is a significant factor influencing developmental competence of the oocyte. Age-related abnormalities of oocytes include a) meiotic incompetence or inability to complete meiotic maturation resulting in oocytes incapable of fertilization; b) errors in meiosis that can be compatible with fertilization but lead to genetic abnormalities that compromise embryo viability; and c) cytoplasmic deficiencies that are expressed at several stages of development before or after fertilization. In general, oocytes from juvenile donors and the embryos derived therefrom appear less robust and may be less tolerant to suboptimal handling and in vitro culture conditions than are adult oocytes. Research to identify specific cytoplasmic deficiencies of juvenile oocytes may enable modifications of culture conditions to correct such deficiencies and thus enhance developmental competence. Use of oocytes from aged donors for assisted reproduction can have a variety of applications such as extending the reproductive life of individual old females whose offspring still have high commercial value, and conservation of genetic resources such as rare breeds of livestock and endangered species. In general, female fertility decreases with advancing age. Studies of women in oocyte donation programs have established reduced oocyte competence as the major cause of declining fertility with age, although inadequate endometrial function can also be a contributing factor. Most research has emphasized the importance of chromosomal abnormalities because of the well established increase in aneuploidy with increasing maternal age but little is known about the underlying cellular and molecular mechanisms. Research aimed at identifying the specific developmental deficiencies of oocytes from juvenile donors and abnormalities of oocytes from aged females will assist in overcoming present bottlenecks that limit the efficiency of assisted reproduction technologies. Such research will also be crucial to the development of new oocyte-based technologies for overcoming infertility and possibly subverting chromosomal abnormalities in women approaching menopause.  相似文献   

13.
一类具有广泛结构多态性的输卵管特异的糖蛋白———输卵管素,可与卵子的透明带和着床前胚胎相联系。本文综述了这种糖蛋白的合成、分泌、进化上的保守性及其在受精和早期胚胎发育过程中的重要作用。  相似文献   

14.
Recently, many studies have investigated the role of extracellular vesicles (EVs) on reproductive events, including embryo development and death, oviduct–embryo crosstalk, in vitro fertilization and others. The aim of this study was to demonstrate whether outgrowth embryo–derived EVs function as bioactive molecules and regulate mouse embryonic developmental competence in vitro and implantation potential in utero. The EVs from mouse outgrowth embryos on 7.5 days postcoitum were detected and selectively isolated to evaluate the embryotrophic functions on preimplantation embryos. Developmental outcomes such as the percentage of blastocyst formation, hatching, and trophoblastic outgrowth were assessed. Furthermore, the total cell number and apoptotic index of blastocysts, which were incubated with EVs during the culture period, were evaluated by fluorescence microscopy. Implantation potential in utero was investigated following embryo transfer. The EVs from outgrowth embryo–conditioned media have rounded membrane structures that range in diameter from 20 to 225 nm. Incubation with EVs improved preimplantation embryonic development by increasing cell proliferation and decreasing apoptosis in blastocysts. Moreover, the implantation rates following embryo transfer were significantly higher in EV–supplemented embryos compared with the control. Collectively, EVs from outgrowth embryo could enhance the embryonic developmental competence and even implantation potential in mice.  相似文献   

15.
The Black and Tan Brachyury (BTBR) mouse strain is a valuable model for the study of long-term complications from obesity-induced type 2 diabetes mellitus and autism spectrum disorder. Due to technical difficulties with assisted reproduction, genetically modified animals on this background have previously been generated through extensive backcrossing, which is expensive and time-consuming. We successfully generated two separate transgenic mouse lines after direct zygote microinjection into this background strain. Additionally, we developed in vitro fertilization (IVF) methods for the BTBR mouse. We found low rates of fertilization and implantation in this strain, and identified the BTBR oocyte as the primary culprit of low success with BTBR IVF. We achieved an increase in live born pups from 5.9 to 35.6 % with IVF in the BTBR strain by use of BTBR females at a younger age (18–25 days), collection of oocytes 15–17 h after superovulation, and the use of supplemented fertilization media. This method eliminates the need for time consuming assisted embryo manipulations that are otherwise required for success with BTBR oocytes. This advancement provides an exciting opportunity to directly generate BTBR transgenics and gene-edited mice using both traditional and emerging genomic editing techniques, such as CRISPR/Cas9. These methods also allow effective colony preservation and rederivation with these strains. To our knowledge, this is the first report describing embryo manipulations in BTBR mice.  相似文献   

16.
雌性生殖细胞发育是动物繁殖的基石,哺乳动物卵母细胞和早期胚胎在其生长发育过程中有许多独特的现象和规律,涉及一系列蛋白质合成/降解和磷酸化等状态的动态改变。对卵母细胞分裂、成熟调控机理以及植入前胚胎发育规律的研究是发育生物学领域的一项重要课题。蛋白质组学是以细胞或组织内全部的蛋白质为研究对象,系统鉴定、定量蛋白质并研究这些蛋白质功能的科学。随着蛋白质分离、鉴定技术的快速发展,蛋白质组学为卵母细胞发生、分化、成熟以及质量控制等相关研究提供了新的方法和内容,如在蛋白质定量、修饰、定位和相互作用等方面提供其他组学技术不可获得的重要信息。这些信息将有助于揭示哺乳动物卵母细胞成熟和早期胚胎发育的分子机制,对于进一步完善卵母细胞的体外成熟培养体系,提高胚胎体外生产、体细胞克隆和转基因动物生产效率具有重要意义。  相似文献   

17.
18.
Although successful embryo development is dependent upon genetic and epigenetic contributions from both the male and female, the male potential to adversely affect embryo development has been scarcely studied. It is unclear whether the sperm variation among different males would affect the outcome of oocyte evaluation by embryo development following fertilization. In the present study, variation in the developmental potential of mouse embryos was first compared between in vitro fertilization with epididymal spermatozoa from different males and Sr(2+) parthenogenetic activation using oocytes of different qualities, and then the effect of male on fertilization and embryo development was examined using randomly chosen oocytes and spermatozoa from cauda epididymidis, vas deferens or electro-ejaculates. Rates of fertilization and blastocyst formation were significantly higher with spermatozoa from cauda epididymidis or vas deferens than with ejaculated spermatozoa. Rates of embryonic development differed significantly between different males, but not between different ejaculates of the same male. Analysis of standard errors of means and coefficients of variance indicated that as long as multiple males were involved, the variation in oocyte fertilization/activation and blastocyst formation was always higher after fertilization than after Sr(2+) parthenogenetic activation whether spermatozoa were collected from epididymidis, vas deferens or ejaculates and regardless of oocyte qualities. It is concluded that (1) epididymal mouse spermatozoa fertilize more oocytes than ejaculated spermatozoa under identical experimental conditions; (2) like farm animals, the mice also show a remarkable male effect on the developmental potential of in vitro produced embryos although they are supposed to be less genetically diverse; (3) parthenogenetic activation is recommended for assessment of oocyte quality to exclude the effect of male.  相似文献   

19.
The objective of the development of assisted reproduction techniques in dogs and cats is their application to non-domestic canine and feline species, most of which are considered threatened or endangered. Among these techniques, an entirely in vitro system for embryo production is effectively an important tool for conservation of wildlife. In the last decade, progress has been made in embryo production in carnivores. It has been shown that canine oocytes can resume meiosis in vitro and that these oocytes can be fertilized and developed in vitro, although at a much lower rate than most other domestic animal oocytes. The reason lies in the dissimilarities of reproductive physiology of the dog compared to other species and the lack of precise information concerning the oviductal environment, in which oocyte maturation, fertilization and early embryonic development take place. Successful in vitro embryo production in the domestic cat has been attained with oocytes matured in vitro, and kittens were born after transfer of IVM/IVF derived embryos. On the basis of these results the in vitro fertilization of oocytes has also been applied in several non-domestic feline species. The effectiveness of such protocols in the preservation of genetic material of rare species can be improved by developing better techniques for long-term storage of gametes. In dogs and cats sperm cells have been successfully frozen and the cryopreservation of oocytes would greatly increase their availability for a range of reproductive technologies. Cryopreserved cat oocytes can be fertilized successfully and their development in vitro after fertilization is enhanced when mature oocytes are frozen. Thus refined techniques of oocyte maturation and fertilization in vitro coupled with oocyte cryopreservation could allow for an easy establishment of genetic combinations when male and female gametes in the desired combination are not simultaneously available, and the propagation of endangered carnivores would be facilitated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号