首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Somatic embryos and plantlets were regenerated from protoplasts of hybrid larch (Larix × eurolepis) isolated from two embryogenic callus and cell suspension culture lines (L1 and L2). L2, which was highly embryogenic, consistently yielded protoplasts that gave rise to somatic embryos. Centrifugation on a discontinuous medium/Percoll density gradient resulted in accumulation of embryogenic protoplasts in one of the Percoll interfaces. First division frequencies were in the range of 28–39% in line 1 and 18–20% in line 2 in both liquid and agarose-solidified culture media. The critical factor in maintaining high viability of cultures was lowering of osmotic pressure by dilution of the initial medium. The first somatic embryos were detected in 23- to 28-day-old cultures. Some of these developed into plants that were transferred to soil.  相似文献   

2.
A reproducible protocol for somatic embryogenesis was established for mango ginger (Curcuma amada Roxb.)—an important horticultural aromatic rhizomatous plant. Embryogenic callus induction was obtained from leaf sheath explants of in vitro raised plants on Murashige and Skoog (MS) agar medium containing 2.0 mg/L 2,4-dichlorophenoxyacetic acid and 0.5 mg/L 6-benzyladenine (BA). Embryogenic callus proliferation, somatic embryo (SE) formation and subsequent plantlet conversion occurred under optimal culture conditions. The effects of MS medium strength, sucrose and BA on SE formation were also evaluated. Half strength MS liquid medium necessary for SE formation and optimal sucrose concentration was found to be 3.0 %. BA at 0.3 mg/L produced the highest number (84.71 %) of SEs from leaf sheath explants. Secondary somatic embryos originated from primary somatic embryos on the same medium supplemented with 0.4–0.6 mg/L BA. Stereo microscopic and scanning electron microscopic observation revealed that the globular and torpedo shaped somatic embryos resulted in suspension culture during development. Mature somatic embryos germinated readily and developed into normal plantlets after 3 weeks on half strength MS basal agar medium under dark condition. Well rooted plantlets were successfully acclimatized at the survival rate of 70 %.  相似文献   

3.
Platycladus orientalis is a widespread conifer, which is native in eastern Asia, and has recently attracted much attention due to its ornamental value for landscape and gardens. However, native P. orientalis populations have been in decline over the past century. Here, we established an in vitro propagation and cryopreservation system for P. orientalis via somatic embryogenesis (SE). Whole megagametophytes with four development stages (Early embryogeny: E1 and late embryogeny: L1, L2, and L3) of zygotic embryos from immature P. orientalis cones were used as initial explants and cultured on three different basal media such as initiation medium (IM), Litvay (LV), and Schenk and Hildebrandt (SH). Both the developmental stage of zygotic embryos and kind of basal medium had a significant effect on embryogenesis induction with IM (P?<?0.001, respectively). The highest frequency of embryogenic callus induction was obtained in megagametophytes with zygotic embryos at L2 stage, which ranged as high as 30%. The maturation medium containing IM basal salts, vitamins and amino acids, 15 g l?1 abscisic acid (ABA), 50 g l?1 maltose, and 100 g l?1 polyethylene glycol 4000 (PEG) was found to be the suitable medium for production of somatic embryos. The frequency of somatic embryo formation from both non-cryopreserved and cryopreserved cell lines was also tested. There were no statistical differences on the production of somatic embryos between non-cryopreserved and cryopreserved cells (P?=?0.523). Genetic fidelity of the plantlets regenerated from non-cryopreserved and cryopreserved embryogenic cell lines was assessed by both random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analysis. There was no genetic instability in the regenerated plantlets from cryopreserved embryogenic cell lines. Both the SE protocol and cryopreservation protocols described here have the potential to contribute the conservation and clonal propagation of P. orientalis germplasm.  相似文献   

4.
In Japanese larch (Larix leptolepis Gordon), a well-developed suspensor forms during somatic embryogenesis. The suspensor is the essential tissue for development of the embryo proper. In high-cell-density culture, the embryogenic cells proliferate, but no somatic embryos form because suspensor development is suppressed. Previously, we identified vanillyl benzyl ether (VBE) as a novel factor suppressing suspensor development from the high-cell-density conditioned medium (HCM), but the inhibitory effect of VBE was weaker than that of HCM added. Therefore, this study attempted to identify another inhibitory factor in the culture medium. Induction of somatic embryos was performed in a medium containing both VBE and a fraction of each chromatogram extracted from the culture medium. Results of the bioassay showed that a fraction had strong inhibitory activity with VBE, but weak activity without it. By physicochemical analyses of the fraction, 4-[(phenylmethoxy)methyl]phenol was identified as an inhibitory factor of larch somatic embryogenesis.  相似文献   

5.
Glycoproteins released from carrot cells into culture media were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and visualized by staining with Coomassie brilliant blue or with the periodic-acid Schiff procedure. The appearance or disappearance of two glycoproteins of Mr 65,000 (GP65) and Mr 57,000 (GP57) was closely related to the formation of somatic embroys. GP65 was released specifically from embryogenic cells cultured in a medium without 2,4-dichlorophenoxyacetic acid, in which they can form somatic embryos. GP57 was released from the same embryogenic cells, if they were cultured in a medium with 2,4-dichlorophenoxyacetic acid, in which they cannot form somatic embryos. Nonembryogenic cells which cannot form somatic embryos, released only GP57.  相似文献   

6.
In vitro formation of roots and somatic embryos is obtained from cotyledon explants of a Spindle tree (Euonymus europaeus L.) cultured on two different media: a medium inducing callus formation and the production of roots, and a medium inducing callus formation, root and somatic embryo production. We studied the effects of α-difluoromethylornithine (DFMO), a specific, irreversible inhibitor of ornithine decarboxylase (ODC) on root and somatic embryo production, growth and titers of putrescine in Euonymus explants and explant-derived calli. Early changes in putrescine levels were detected in both cultures before the visible emergence of roots or somatic embryos. DFMO rapidly inhibited putrescine accumulation and growth in non-embryogenic calli and highly stimulated rooting activity. DFMO partially inhibited putrescine accumulation in embryogenic calli. This inhibition had no effects on callus growth but significantly reduced the time of emergence of roots and highly stimulated somatic embryo production. The relationship among putrescine, putrescine metabolism, growth, root and somatic embryo formation is discussed.  相似文献   

7.
A genetic transformation method via secondary somatic embryogenesis was developed for alfalfa (Medicago sativa L.). Mature somatic embryos of alfalfa were infected by Agrobacterium strain GV3101 containing the binary vector pCAMBIA2301. pCAMBIA2301 harbors the uidA Gus reporter gene and npt II acts as the selectable marker gene. Infected primary embryos were placed on SH2K medium containing plant growth regulators to induce cell dedifferentiation and embryogenesis under 75 mg/L kanamycin selection. The induced calli were transferred to plant medium free of plant growth regulators for embryo formation while maintaining selection. Somatic embryos germinated normally upon transfer to a germination medium. Plants were recovered and grown in a tissue culture room before transfer to a greenhouse. Histochemical analysis showed high levels of GUS activity in secondary somatic embryos and in different organs of plants recovered from secondary somatic embryos. The presence and stable integration of transgenes in recovered plants were confirmed by polymerase chain reaction using transgene-specific primers and Southern blot hybridization using the npt II gene probe. The average transformation efficiency achieved via secondary somatic embryogenesis was 15.2%. The selection for transformation throughout the cell dedifferentiation and embryogenic callus induction phases was very effective, and no regenerated plants escaped the selection procedure. Alfalfa transformation is usually achieved through somatic embryogenesis using different organs of developed plants. Use of somatic embryos as explants for transformation can avoid the plant development phase, providing a faster procedure for introduction of new traits and facilitates further engineering of previously transformed lines.  相似文献   

8.
Three different morphogenic responses??caulogenesis, direct somatic embryogenesis, and callusing??were noted in cotyledon explants of Semecarpus anacardium L. cultured in woody plant medium (WPM) containing thidiazuron (TDZ). Thidiazuron, at all concentrations tested, induced organogenic as well as embryogenic responses. The organogenic buds differentiated to shoots and the embryogenic mass (EM) gave rise to globular embryos which differentiated up to cotyledon-stage embryos on repeated culture in growth regulator (GR)-free WPM medium containing 0.2% activated charcoal after the removal of TDZ. The organogenic and embryogenic responses were optimal in 9.08???M TDZ after the removal of TDZ. Elongated shoots rooted in half-strength liquid WPM medium with 2.46???M indole butyric acid. Plants were successfully acclimatized and transferred to soil. Histological studies confirmed the direct origin of the organogenic buds from the cotyledon explants. The EMs produced somatic embryos on repeated culture in charcoal incorporated GR-free medium. Morphogenic callus formation from the cotyledon explants was also noted. This callus on repeated culture in WPM medium with charcoal differentiated into somatic embryos. Repetitive somatic embryogenesis was evident from direct and indirectly formed primary embryos. The somatic embryos did not convert into plantlets, though sporadic germination of embryos was observed through the emergence of roots.  相似文献   

9.
《Plant science》1987,52(3):237-242
Direct propagation of Lycopersicon esculentum Mill. and L. peruvianum (L.) Mill. has been achieved from both reproductive and embryonic stages of the life cycle. Multiple adventitious shoots were induced from immature flower buds on Murashige and Skong (MS) basal medium supplemented with 2 mg 1−1 6-benzylaminopurine (BAP). Multiple shoots and somatic embryos were induced from immature zygotic embryos on HLH basal medium supplemented with 1 g 1−1 yeast extract and 2 mg 1−1 BAP. The nature of the response was related to the developmental stage of the parent embryo at explanting. The process of multiple shoot induction from embryos shows features in common with direct somatic embryogenesis from sexual embryos of Lycopersicon and other genera.  相似文献   

10.
Background and Aims In conifers, mature somatic embryos and zygotic embryos appear to resemble one another physiologically and morphologically. However, phenotypes of cloned conifer embryos can be strongly influenced by a number of in vitro factors and in some instances clonal variation can exceed that found in nature. This study examines whether zygotic embryos that develop within light-opaque cones differ from somatic embryos developing in dark/light conditions in vitro. Embryogenesis in larch is well understood both in situ and in vitro and thus provides a suitable system for addressing this question.Methods Features of somatic and zygotic embryos of hybrid larch, Larix × marschlinsii, were quantified, including cotyledon numbers, protein concentration and phenol chemistry. Somatic embryos were placed either in light or darkness for the entire maturation period. Embryos at different developmental stages were embedded and sectioned for histological analysis.Key Results Light, and to a lesser degree abscisic acid (ABA), influenced accumulation of protein and phenolic compounds in somatic and zygotic embryos. Dark-grown mature somatic embryos had more protein (91·77 ± 11·26 µg protein mg–1 f.wt) than either dark-grown zygotic embryos (62·40 ± 5·58) or light-grown somatic embryos (58·15 ± 10·02). Zygotic embryos never accumulated phenolic compounds at any stage, whereas somatic embryos stored phenolic compounds in the embryonal root caps and suspensors. Light induced the production of quercetrin (261·13 ± 9·2 µg g–1 d.wt) in somatic embryos. Mature zygotic embryos that were removed from seeds and placed on medium in light rapidly accumulated phenolics in the embryonal root cap and hypocotyl. Delaying germination with ABA delayed phenolic compound accumulation, restricting it to the embryonal root cap.Conclusions In larch embryos, light has a negative effect on protein accumulation, but a positive effect on phenol accumulation. Light did not affect morphogenesis, e.g. cotyledon number. Somatic embryos produced different amounts of phenolics, such as quercetrin, depending on light conditions. The greatest difference was seen in the embryonal root cap in all embryo types and conditions.  相似文献   

11.
Cotyledon explants of ginseng (Panax ginseng C.A. Meyer) zygotic embryos produced somatic embryos at a high rate (68%) on medium without any growth regulators. Under this culture condition, apparent polar somatic embryogenesis occurred near the basal-excised portion of the cotyledons. When the cotyledon explants were cultured on medium containing 2,3,5-triiodobenzoic acid (TIBA), an auxin polar-transport inhibitor, the frequency of somatic embryo formation markedly decreased and was completely inhibited on medium containing 20 μM TIBA. On medium containing 5–10 μM, somatic embryos developed sporadically on the surface of the cotyledons and had a normal embryo axis but jar-shaped cotyledons. Embryos with jar-shaped cotyledons were also observed to occur at a high frequency when the early globular embryos formed on hormone-free medium were transferred to medium containing 20 μM TIBA. From these results, it was deduced that endogenous auxin in the cotyledon explants plays an important role in the induction of somatic embryos and that the cotyledon development in somatic embryos is also related to the polar transport of endogenous auxin. Received: 11 October 1996 / Revised version received: 8 January 1997 / Accepted: 26 January 1997  相似文献   

12.
Understanding the fate and dynamics of cells during callus formation is essential to understanding totipotency and the somatic embryogenesis (SE) mechanisms. In the present study, the histodifferentiation events involved during the acquisition and development of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.) was investigated. Zygotic embryos were inoculated on SE induction medium, and at 14 days the first divisions of the procambial and perivascular cells were observed. This region progressed to the formation of meristematic masses at 21 days, indicating their procambial and perivascular origin. Primary calli emerged at 45 days of culture, followed by progression to embryogenic calli at 90 days. The formation of proembryos (PE) from the meristematic cells occurred at 135 days of cultivation. The PE were isolated from the tissue of origin by the slight thickening of the cell wall, indicating their unicellular origin. When transferred to the maturation phase, differentiation of the somatic embryos at different developmental stages (globular and torpedo) was observed. The differentiated somatic embryos presented protoderm, procambial strands and plumules. Afterwards, they were transferred to culture medium without growth regulators in which conversion of the somatic embryos from torpedo stage into plants was observed. These results enable a greater understanding of the SE process and plantlet formation in E. guineensis.  相似文献   

13.
14.
A critical factor in somatic embryogenesis protocols in papaya (Carica papaya L.) has been incomplete germination of somatic embryos due to formation of a basal callus, which prevents the emission of the radicle. This work aims to achieve complete germination of somatic embryos in liquid and semi-solid culture media. The effect of the culture conditions on germination of somatic embryos using the RITA® temporary immersion system were evaluated as well as the effect of phloroglucinol on germination of somatic embryos in semi-solid culture medium. The results of using the RITA® culture medium with a combination of 0.02 μM BAP and 2.90 μM gibberellic acid had a good response for total germination (100%) but somatic embryos had only partial germination with 400 mg fresh mass. However, the optimum inoculum density was 200 mg fresh mass of somatic embryos which produced 100% total germination and 95% somatic embryos with complete germination. Also, it was possible to achieve complete germination of somatic embryos with low callus formation (13%) using phloroglucinol at a concentration of 475.8 μM on semi-solid culture medium. This is the first report of two biotechnological strategies for complete germination of plants from somatic embryos in the papaya cultivar `Maradol Roja´.  相似文献   

15.
An efficient protocol for plant regeneration through somatic embryogenesis was established from in vivo leaf explants of Swertia chirayita, a critically endangered medicinal herb. The highest frequency (76%) of embryogenic callus was induced on Murashige & Skoog (MS) medium supplemented with 0.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L kinetin (Kn) from in vivo leaf explants. Globular somatic embryos were induced and further matured from such embryogenic calli by subsequent culture on the same medium. The highest number of somatic embryos (48.83 ± 4.6) was recovered from embryogenic calli derived from leaf explants after 6 weeks of culture. Synthetic seeds were produced by encapsulating of torpedo stage embryos in sodium alginate (4% W/V) gel, dropped into 100 mM calcium chloride (CaCl2 · 2H2O) solution. The synthetic seeds were germinated on MS medium. The highest frequency of synthetic seed germination (84%) was observed on MS medium supplemented with 1.0 mg/L BA and 0.5 mg/L NAA. Regenerants were successfully acclimatized under ex vitro condition. This is the first report on synthetic seed production of S. chirayita. Application of these protocols would be helpful in reducing stress in natural habitat, and in long-term storage of elite genotypes through synthetic seed production.  相似文献   

16.
Background and Aims The date palm is a dioecious perennial species of the Arecaceae for which in vitro micropropagation is essential to ensure the renewal of palm plantations. This study presents a histocytological analysis of the traditional Mauritanian Amsekhsi cultivar beginning from the initial callogenesis and continuing up to the establishment of the cellular embryogenic cell suspensions. The formation of somatic embryos and their development into rooted plants are also described.• Methods Foliar segments of seedlings cultured in the presence of 2,4-D produced primary calli that were chopped to produce fine friable granular calli that subsequently produced cellular suspensions when transferred to liquid medium. The somatic proembryos that developed after removal of the 2,4-D were plated on agar medium where they developed into rooted plants. Thin sections of tissue fragments taken at each stage of the process were stained using Periodic Acid Schiff and Naphthol Blue-Black.• Key Results The first cellular divisions were localized close to the vascular vessels of the leaf. The primary calli were obtained within 2 months. Fine friable granular calli grew quickly after the primary calli were chopped. Individual embryogenic cells were identified that rapidly started to divide and developed into globular proembryos. In addition, in the microcalli, breaking zones appeared in the thick pectocellulosic walls which delimited the pluricellular proembryos. The anatomy of somatic embryos is similar to that of zygotic embryos despite a deficit in the accumulation of intracellular proteins. When rooted with NAA, the vitroplants developed a strong orthotropic taproot.• Conclusions This study contributes to understanding the whole process of somatic embryogenesis, but two specific questions remain to be answered: what factors are involved in the reactivation of the somatic cells at the beginning of the initial callogenesis, and why do the somatic embryos not accumulate proteins in their tissues during maturation?  相似文献   

17.
An efficient and reproducible Agrobacterium-mediated transformation system via repetitive secondary somatic embryogenesis was developed for Rosa rugosa ‘Bao white’. Somatic embryogenesis was induced from in vitro-derived unexpanded leaflet explants on MS medium supplemented with 4.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), 0.05 mg/L Kinetin and 30 g/L glucose. Secondary somatic embryos were successfully proliferated via cyclic secondary somatic embryogenesis on MS medium containing 1.0 mg/L 2,4-D, 0.01 mg/L 6-benzyladenine and 45 g/L glucose under light intensity of 500–1,000 lux. The highest germination rate (86.33 %) of somatic embryos was observed on 1/2-strength MS medium containing 1.0 mg/L BA. Relying on the repetitive secondary somatic embryogenesis and A. tumefaciens strain EHA105 harboring the binary vector pBI121, a stable and effective Agrobacterium-mediated transformation pattern was developed. The presented transformation protocol, in which somatic embryo clumps at globular stage (0.02–0.04 g) were infected by Agrobacterium for 60 min and co-cultivated for 2 days, and then selected under a procedure of 3 steps, were confirmed to be optional by GUS histochemical assay and Southern blot analysis. The procedure described here will be very useful for the introgression of desired genes into R. rugosa ‘Bao white’ and the molecular analysis of gene function.  相似文献   

18.
The aim of this study was to improve the direct somatic embryogenesis and initiate embryogenic callus formation in camphor tree (Cinnamomum camphora L.) on hormone-free medium. The influence of osmotic stress pretreatment of immature zygotic embryos (0.5 and 1.0 M solution of sucrose for 12, 24, 48, 72, 96, 120, and 144 h at 4 or 25°C) before cultured on hormone-free medium, on embryogenesis efficiency was assessed. The embryogenesis frequency was improved from 16.29 to 93.27%, while the average number of somatic embryos per explant increased from 3 to 12.57. Activated charcoal (AC), medium renewal, basal medium, light conditions and sucrose concentration in culture medium were also evaluated for their effect on somatic embryogenesis. AC addition and 10-day medium renewal did not increase embryogenesis efficiency significantly, and Murashige and Skoog (MS) medium proved to be more beneficial for somatic embryo formation than others. No differences were found between embryogenesis frequencies when cultured in darkness or under light, but culturing under light yielded more embryos. After the sucrose solution pretreatment, high level concentration of sucrose in induction medium was not needed for somatic embryogenesis, for it had a negative effect on somatic embryo formation when the concentration of sucrose was higher than 50 g l−1. The derived embryogenic lines were maintained via repetitive embryogenesis on hormone-free medium. Low ratio formation of embryogenic callus was observed on the surface of somatic embryos both on induction and proliferation medium. Plantlets derived from somatic embryos grew vigorously with normal appearance similar to germinated zygotic embryos.  相似文献   

19.
20.
Direct somatic embryogenesis of Frittilaria meleagris L. was induced using leaf base explants excised from in vitro grown shoots. Somatic embryos occurred at the basal part of leaf explants 4 weeks after culture on a Murashige and Skoog (MS) medium supplemented with various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) or kinetin (KIN). The highest number of somatic embryos (SEs) were formed (9.74) from leaf explant on MS medium supplemented with 0.1 mg dm−3 2,4-D after 4 weeks of culture initiation. An initial exposure to a low concentration of KIN in the medium also enhanced SEs induction. Our observations by light and scanning electron microscopy revealed that SEs originate directly from the epidermal and subepidermal layers of leaf explant. The developmental stages of somatic embryogenesis from the first unequal cell division through the meristematic clusters, multi-cellular globular somatic embryos to the fully formed cotyledonary embryos were determined. After 4 weeks on MS medium without plant growth regulators, SEs developed into bulblets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号