首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biofilm formation took place in 48?h within the solid substrate cultivation of Lactobacillus plantarum 8-RA-3 strain on the wheat bran saturated with the MRS medium. The drying of the bran fermented by lactobacilli resulted in a decrease in the number of colony-forming units (CFU) from 23.0?×?108 to 6.9?×?105?CFU/g in daily samples and to less than 104?CFU/g in 2- and 3-day samples. However, according to the fluorescence-based live/dead assay data, more than 40?% of the non-cultured bacteria were viable. As a result of mice kept on a diet with the introduction of bran fermented by Lact. plantarum 8-RA-3 for 72?h into the fodder, a recovery of normal level of intestinal lactobacilli, inhibited by administration of antibiotic was noted. The strain genetically identical to the Lact. plantarum 8-RA-3 was isolated from the feces of these mice. The results indicate that solid substrate cultivated Lact. plantarum 8-RA-3 strain formed a biofilm. Once dried and transferred into a non-cultured state, biofilm cells retained its viability and biological activity.  相似文献   

2.
Bacteriocin-producing Lactobacillus plantarum LPCO10 and its non-bacteriocin-producing, bacteriocinimmune derivative, L. plantarum 55-1, were evaluated separately for growth and persistence in natural Spanish-style green olive fermentations. Both strains were genetically marked and selectively enumerated using antibiotic-containing media. Plasmid profile and bacteriocin production (bac+) were used as additional markers. When olive brines were inoculated at 105 CFU/ml, the parent strain, LPCO10, proliferated to dominate the epiphytic microflora, sharing high population levels with other spontaneously occurring lactobacilli and persisting throughout the fermentation (12 weeks). In contrast, the derivative strain could not be isolated after 7 weeks. Stability of both plasmid profile and bac+ (LPCO10 strain) or bac- (55-1 strain) phenotype was shown by L. plantarum LPCO10 and L. plantarum 55-1 isolated throughout the fermentation. Bacteriocin activity could be found in the L. plantarum LPCO10-inoculated brines only after ammonium sulfate precipitation and concentration (20 times) of the final brine. Spontaneously occurring lactobacilli and lactic coccus populations, which were isolated from each of the fermenting brines studied during this investigation, were shown to be sensitive to the bacteriocins produced by L. plantarum LPCO10 when tested by the drop diffusion test. The declines in both pH and glucose levels throughout the fermentative process were similar in L. plantarum LPCO10- and in L. plantarum 55-1-inoculated brines and were comparable to the declines in the uninoculated brines. However, the final concentration of lactic acid in L. plantarum LPCO10-inoculated brines was higher than in the L. plantarum 55-1-inoculated brines and uninoculated brines. These results indicated that L. plantarum LPCO10 may be useful as a starter culture to control the lactic acid fermentation of Spanish-style green olives.  相似文献   

3.
The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.  相似文献   

4.
'Urutan' is a Balinese traditional fermented sausage, which is made of lean pork and fat mixed with spices, sugar, and salt. The mixture is stuffed into cleaned pig intestine and fermented under uncontrolled condition during sun drying for 5 days. The investigation showed that lactic acid bacteria (LAB) were the dominating bacteria during 'urutan' fermentation. Among the 71 isolates obtained, lactobacilli dominated by 77.5% and the other 22.5% were pediococci. Based on physiological characteristics, the isolates were classified into 13 groups: nine belonged to the lactobacilli and the other four were pediococci. One isolate representing each group was chosen randomly, and then was identified by 16S rDNA sequence comparison. Phylogenetic relationship positioned three groups to Lactobacillus plantarum and four groups were closely related to L. farciminis. Two groups were identified as obligate heterofermentative lactobacilli: one was L. fermentum and the other was distantly related to L. hilgardii. Two groups belonging to the pediococci were strains of Pediococcus acidilactici and the other two were closely related to P. pentosaceus. A dramatic succession occurred during fermentation of 'urutan'. Three species mainly dominated the process wherein the initial growth was started by L. plantarum then followed by the growth of P. acidilactici, and finally, L. farciminis was found to be predominant at the last stage of fermentation.  相似文献   

5.
In this paper, the influence of lactic acid fermentation on the metabolic profile of ginkgo kernel juice was studied. For this purpose, three lactic acid bacteria (LAB), Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus casei, were selected. The results showed that all the lactobacilli grew well in ginkgo kernel juice with viable cell counts exceeding 8.0 Log CFU/mL. The organic acid contents underwent dynamic changes, and the lactic acid production reached more than 3 g/L. The consumption of sugars and free amino acids by LAB was evident. Meanwhile, more than 70% of the ginkgolic acids were degraded by LAB, and the final concentrations in ginkgo kernel juice were below 1 mg/L after 48 h of fermentation. In contrast, the terpene lactones contents in fermented ginkgo kernel juice exceed 20 mg/L, which was 1.6-fold higher than that in the unfermented juice. Certain phenolics were significantly enriched, and the total phenolic content increased by approximately 9% through fermentation. In addition, lactic acid fermentation significantly enhanced the antioxidant and antimicrobial activities of ginkgo kernel juice. Overall, the results indicated that lactic acid fermentation can effectively improve the nutritional value and safety of ginkgo kernel juice.  相似文献   

6.
Aims: To investigate the effects of nisin on lactobacilli contamination of yeast during ethanol fermentation and to determine the appropriate concentration required to control the growth of selected lactobacilli in a YP/glucose media fermentation model. Methods and Results: The lowest concentration of nisin tested (5 IU ml?1) effectively controlled the contamination of YP/glucose media with 106 CFU ml?1 lactobacilli. Lactic acid yield decreased from 5·0 to 2·0 g l?1 and potential ethanol yield losses owing to the growth and metabolism of Lactobacillus plantarum and Lactobacillus brevis were reduced by 11 and 7·8%, respectively. Approximately, equal concentrations of lactic acid were produced by Lact. plantarum and Lact. brevis in the presence of 5 and 2 IU ml?1 nisin, respectively, thus demonstrating the relatively higher nisin sensitivity of Lact. brevis for the strains in this study. No differences were observed in the final ethanol concentrations produced by yeast in the absence of bacteria at any of the nisin concentrations tested. Conclusions: Metabolism of contaminating bacteria was reduced in the presence of 5 IU ml?1 nisin, resulting in reduced lactic acid production and increased ethanol production by the yeast. Significance and Impact of the Study: Bacteriocins represent an alternative to the use of antibiotics for the control of bacterial contamination in fuel ethanol plants and may be important in preventing the emergence of antibiotic‐resistant contaminating strains.  相似文献   

7.
《Process Biochemistry》1999,34(1):49-53
Xanthomonas campestris cells present in xanthan fermentation broth were lysed by enzymes secreted by Trichoderma koningii. Protease which appeared responsible for cell lysis was produced by the fungus in solid-state fermentation of wheat bran optimally at pH 7 and 30°C in 72 h. The culture filtrate, having protease in addition to other extracellular enzymes, was used as such to clarify xanthan solution and found to lyse the cells optimally at pH 7 and 50°C. The maximum transparency of xanthan solution achieved was 63%.  相似文献   

8.
In order to develop a multi-microbe probiotic preparation of Lactobacillus reuteri G8-5 and Bacillus subtilis MA139 in solid-state fermentation, a series of parameters were optimized sequentially in shake flask culture. The effect of supplementation of B. subtilis MA139 as starters on the viability of L. reuteri G8-5 was also explored. The results showed that the optimized process was as follows: water content, 50 %; initial pH of diluted molasses, 6.5; inocula volume, 2 %; flask dry contents, 30~35 g/250 g without sterilization; and fermentation time, 2 days. The multi-microbial preparations finally provided the maximum concentration of Lactobacillus of about 9.01?±?0.15 log CFU/g and spores of Bacillus of about 10.30?±?0.08 log CFU/g. Compared with pure fermentation of L. reuteri G8-5, significantly high viable cells, low value of pH, and reducing sugar in solid substrates were achieved in mixed fermentation in the presence of B. subtilis MA139 (P?<?0.05). Meanwhile, the mixed fermentation showed the significantly higher antimicrobial activity against E. coli K88 (P?<?0.05). Based on the overall results, the optimized process enhanced the production of multi-microbe probiotics in solid-state fermentation with low cost. Moreover, the viability of L. reuteri G8-5 could be significantly enhanced in the presence of B. subtilis MA139 in solid-state fermentation, which favored the production of probiotics for animal use.  相似文献   

9.
The present study aimed at optimization of culture condition for the enhanced production of extra cellular thermostable cellulase-free xylanase from Bacillus pumilus by solid-state fermentation. Batch studies were carried out to evaluate various agro-industrial residues such as rice bran, rice husk, rice straw, sawdust, coconut pith, sugarcane bagasse and wheat bran for enzyme production by the bacterial culture. The endoxylanase production was highest on wheat bran media (5582 U/gds), which was enhanced 3.8-fold (21,431 U/gds) by optimization of cultivation conditions. The enzymatic extracts was used in mixed wastepaper recycling, which resulted in a considerable improvement of the paper strength with high drainage and easy drying up. The results of enzyme application with recycled paper clearly indicated that the effective use of enzymes in fiber separation could reduce the cost of carton paper production.  相似文献   

10.
Lactobacillus plantarum CNRZ 1228 exhibited heme-dependent catalase activity under environmental conditions similar to those encountered during sausage fermentation. The 1,455-bp catalase gene (katL) was cloned and encoded a protein of 484 amino acids. Expression of katL in a heterologous host showed that katL encodes a functional catalase. PCR screening of selected strains of lactic acid bacteria for katL indicated the presence of similar genes in other strains of lactobacilli.  相似文献   

11.
Metarhizium anisopliae was grown by solid-state fermentation on a series of compositions of rice, rice bran, or rice husk media for the production of cyclodepsipeptides, destruxins A and B. The best yield for destruxin A and destruxin B were 2.9 mg kg–1 substrate and 227 mg kg–1 substrate, respectively, after 14 days cultivation with rice/bran/husk medium at 71% water content together with water activity of 0.921.  相似文献   

12.
Probiotics have decreased the counts of salivary mutans streptococci (MS) in clinical studies. The aim of this study was to compare the effects of Lactobacillus reuteri PTA 5289 and L. paracasei DSMZ16671 on the adhesion of a reference strain and a clinical isolate of Streptococcus mutans and on the counts of MS in a biofilm. The adhesion of S. mutans Ingbritt and the clinical isolate S. mutans 2366 to a smooth glass surface and saliva-coated hydroxyapatite (SHA) were studied in the presence of and without the lactobacilli. A three-species biofilm formed on saliva-coated hydroxyapatite discs was used in the biofilm experiments. The lactobacilli did not affect adhesion to the glass surface but interfered with binding to SHA. No effects of the lactobacilli were detected on the MS levels in the three-species biofilms. The results of the SHA binding experiments best reflected the results of the existing clinical studies.  相似文献   

13.
Four sausage batters (17.59% beef, 60.67% pork, and 17.59% pork fat) were inoculated with two commercial starter culture organisms (>7 log10 CFU/g Pediococcus pentosaceus and 6 log10 CFU/g Staphylococcus carnosus) and a five-strain cocktail of nonpathogenic variants of Escherichia coli O157:H7 to yield 6 to 7 log10 CFU/g. Microencapsulated allyl isothiocyanate (AIT) was added to three batters at 500, 750, or 1,000 ppm to determine its antimicrobial effects. For sensory analysis, separate batches with starter cultures and 0, 500, or 750 ppm microencapsulated AIT were produced. Sausages were fermented at ≤26°C and 88% relative humidity (RH) for 72 h. Subsequently sausages were dried at 75% RH and 13°C for at least 25 days. The water activity (aw), pH, and levels of starter cultures, E. coli O157:H7, and total bacteria were monitored during fermentation and drying. All sausages showed changes in the initial pH from 5.57 to 4.89 and in aw from 0.96 to 0.89 by the end of fermentation and drying, respectively. Starter culture numbers were reduced during sausage maturation, but there was no effect of AIT on meat pH reduction. E. coli O157:H7 was reduced by 6.5 log10 CFU/g in sausages containing 750 and 1,000 ppm AIT after 21 and 16 days of processing, respectively. E. coli O157:H7 numbers were reduced by 4.75 log10 CFU/g after 28 days of processing in treatments with 500 ppm AIT, and the organism was not recovered from this treatment beyond 40 days. During sensory evaluation, sausages containing 500 ppm AIT were considered acceptable although slightly spicy by panelists.  相似文献   

14.
Fecal bacteria from 33 infants (aged 1 to 6 months) were tested for growth on commercial prebiotics. The children were born vaginally (20) or by caesarean section (13). Bifidobacteria, lactobacilli, gram-negative bacteria, Escherichia coli, and total anaerobes in fecal samples were enumerated by selective agars and fluorescence in situ hybridization. The total fecal bacteria were inoculated into cultivation media containing 2 % Vivinal® (galactooligosaccharides—GOS) or Raftilose® P95 (fructooligosaccharides—FOS) as a single carbon source and bacteria were enumerated again after 24 h of anaerobic cultivation. Bifidobacteria dominated, reaching counts of 9–10 log colony-forming units (CFU)/g in 17 children born vaginally and in seven children delivered by caesarean section. In these infants, lactobacilli were more frequently detected and a lower number of E. coli and gram-negative bacteria were determined compared to bifidobacteria-negative infants. Clostridia dominated in children without bifidobacteria, reaching counts from 7 to 9 log CFU/g. Both prebiotics supported all groups of bacteria tested. In children with naturally high counts of bifidobacteria, bifidobacteria dominated also after cultivation on prebiotics, reaching counts from 8.23 to 8.77 log CFU/mL. In bifidobacteria-negative samples, clostridia were supported by prebiotics, reaching counts from 7.17 to 7.69 log CFU/mL. There were no significant differences between bacterial growth on Vivinal® and Raftilose® P95 and counts determined by cultivation and FISH. Prebiotics should selectively stimulate the growth of desirable bacteria such as bifidobacteria and lactobacilli. However, our results showed that commercially available FOS and GOS may stimulate also other fecal bacteria.  相似文献   

15.
A rifampicin-resistant variant of two strains of Lactobacillus plantarum, one strain of Pediococcus acidilactici, and one strain of Enterococcus faecium were used for the experimental production of lucerne silage. Laboratory silage without inoculants served as a control. Counts of total anaerobes, total lactic acid bacteria (LAB), lactobacilli, pediococci, and enterococci were determined on days 14, 21, 30, 49, and 60 of lucerne fermentation. LAB dominated in silage microflora, reaching a percentage between 59 and 95 % of total anaerobes. Lactobacilli were found as a predominant group of LAB during the whole study. Lactobacilli reached numbers 8.74 log CFU/g in treated silage and 8.89 log CFU/g in the control at the first observation. Their counts decreased to 4.23 and 4.92 log CFU/g in treated silage and the control, respectively, on day 63 of fermentation. Similar decreases were observed in all bacterial groups. The treated silage samples possessed lower pH (4.2 vs. 4.5 in control samples) and contained more lactic acid compared to control silage. The identity of re-isolated rifampicin-resistant bacteria with those inoculated to the lucerne was evaluated by fingerprinting techniques. The fingerprint profiles of re-isolated bacteria corresponded to the profiles of strains used for the treatment. It could be concluded that supplemented LAB dominated in laboratory silage and overgrew naturally occurring LAB.  相似文献   

16.
Lactobacillus plantarum has been used in human clinical trials to promote beneficial effects in the immune system, to alleviate intestinal disorders, and to reduce the risk of cardiovascular disease. It is also involved in many fermentation processes in the food industry. However, information on the fate of ingested L. plantarum is limited. In this study, 61 subjects received daily doses of fermented milk containing 2 × 1011 cells of L. plantarum Lp115 for different periods of time. The target microorganism was monitored in the fecal microbiota via quantitative PCR (qPCR). L. plantarum was detected and quantified in all of the subjects during the ingestion periods. The differences between the L. plantarum levels at time zero and during all the different ingestion periods were statistically significant (P = 0.001). However, at 15 and 45 days after discontinuing supplementation, the number of lactobacilli was reduced to the baseline level (those at time zero). A longer period with L. plantarum in the diet did not result in increased levels of this bacterium in the stool, based on postconsumption evaluations (P = 0.001). The qPCR method was specific and sensitive for L. plantarum quantification in such a complex microbial environment as the gastrointestinal tract.  相似文献   

17.
We analyzed and compared the difference in sinapine concentration in rapeseed meal between the filamentous fungus, Trametes sp 48424, and the yeast, Saccharomyces cerevisiae, in both liquid and solid-state fermentation. During liquid and solid-state fermentation by Trametes sp 48424, the sinapine concentration decreased significantly. In contrast, the liquid and solid-state fermentation process by Saccharomyces cerevisiae just slightly decreased the sinapine concentration (P ≤ 0.05). After the solid-state fermented samples were dried, the concentration of sinapine in rapeseed meal decreased significantly in Saccharomyces cerevisiae. Based on the measurement of laccase activity, we observed that laccase induced the decrease in the concentration of sinapine during fermentation with Trametes sp 48424. In order to eliminate the influence of microorganisms and the metabolites produced during fermentation, high moisture rapeseed meal and the original rapeseed meal were dried at 90°C and 105°C, respectively. During drying, the concentration of sinapine in high moisture rapeseed meal decreased rapidly and we obtained a high correlation coefficient between the concentration of sinapine and loss of moisture. Our results suggest that drying and enzymes, especially laccase that is produced during the solid-state fermentation process, may be the main factors that affect the concentration of sinapine in rapeseed meal.  相似文献   

18.
Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.  相似文献   

19.
Bacteria in their natural environments frequently exist as mixed surface-associated communities, protected by extracellular material, termed biofilms. Biofilms formed by the human pathogen Campylobacter jejuni may arise in the gastrointestinal tract of animals but also in water pipes and other industrial situations, leading to their possible transmission into the human food chain either directly or via farm animals. Bacteriophages are natural predators of bacteria that usually kill their prey by cell lysis and have potential application for the biocontrol and dispersal of target bacteria in biofilms. The effects of virulent Campylobacter specific-bacteriophages CP8 and CP30 on C. jejuni biofilms formed on glass by strains NCTC 11168 and PT14 at 37°C under microaerobic conditions were investigated. Independent bacteriophage treatments (n ≥ 3) led to 1 to 3 log10 CFU/cm2 reductions in the viable count 24 h postinfection compared with control levels. In contrast, bacteriophages applied under these conditions effected a reduction of less than 1 log10 CFU/ml in planktonic cells. Resistance to bacteriophage in bacteria surviving bacteriophage treatment of C. jejuni NCTC 11168 biofilms was 84% and 90% for CP8 and CP30, respectively, whereas bacteriophage resistance was not found in similarly recovered C. jejuni PT14 cells. Dispersal of the biofilm matrix by bacteriophage was demonstrated by crystal violet staining and transmission electron microscopy. Bacteriophage may play an important role in the control of attachment and biofilm formation by Campylobacter in situations where biofilms occur in nature, and they have the potential for application in industrial situations leading to improvements in food safety.  相似文献   

20.
Oats (Avena sativa) have received considerable interest for their high content of soluble and insoluble fibre and for their high fermentability upon applying probiotic lactic acid bacteria (LAB). In the present study, Box–Behnken optimization design was used to optimize three different levels of oat, sucrose and starter culture concentration on the final viable cell population of Lactobacillus plantarum for the development of a fermented drink. A second-order polynomial response surface equation was developed indicating the effect of the studied variables on L. plantarum growth. Contour maps generated using the response surface equation showed that the experimental variables significantly affected the growth of the L. plantarum. The optimized factors (5.5% oats, 1.25% sugar and 5% inoculum) were then applied to prepare a fermented drink to obtain a growth of 10.4 log CFU/ml. The shelf life of the fermented drink was monitored over a period of 21 days. Physical parameters such as colour and viscosity were also measured along with the microbiological count, pH and titrable acidity. β-Glucan level remain unchanged during the fermentation and also during the entire storage period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号