首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using BrdU-labeling and acridine orange staining, the behavior of X-chromosome replication was studied in 28 XXX and 19 XXY digynous mouse triploids. In some of these the paternal and maternal X chromosome could by cytologically distinguished. Such embryos were obtained by mating chromosomally normal females with males carrying Cattanach's X chromosome which contains an autosomal insertion that substantially increases the length of this chromosome. In the XXX triploids there were two distinct cell lines, one with two late-replicating X chromosomes, and the other with only one late-replicating X. The XXY triploids were also composed of two cell populations, one with a single late-replicating X and the other with no late replicating X chromosome. Assuming that the late-replicating X is genetically inactive, in both XXX and XXY triploids, cells from the embryonic region tended to have only one active X chromosome, whereas those from the extra-embryonic membranes tended to have two active X chromosomes. The single active X chromosome was either paternal or maternal in origin, but two active X chromosomes were overwhelmingly maternal in origin, suggesting paternal X-inactivation in extra-embryonic tissues.  相似文献   

2.
By means of a cytological method involving BrdU incorporation and acridine orange fluorescence staining in combination with embryo manipulation, we studied X-chromosome activity in female preimplantation mouse embryos with special reference to the correlation between X-chromosome inactivation and cell differentiation. There was no sign of asynchronous replication between the two X chromosomes from the one-cell to intermediate blastocyst stage. The allocyclic X chromosome, first detected in late blastocysts, was paternal in origin, mostly replicating early in the S phase and limited to the trophectoderm. Subsequent X-chromosome inactivation occurring in the primary endoderm was also characterized by the involvement of the paternal X and early replication. Both X chromosomes continued to replicate synchronously in the embryonic ectoderm or epiblast at this stage. It was evident that overt cell differentiation preceded the appearance of the asynchronously replicating X chromosome in the trophectoderm and primary endoderm. This finding seems to support the view that cell differentiation is an important correlate of X-chromosome inactivation.  相似文献   

3.
Regulation of imprinted X-chromosome inactivation in mice by Tsix   总被引:11,自引:0,他引:11  
  相似文献   

4.
Bromodeoxyuridine-dye technique analysis of X chromosome DNA synthesis in female adult and fetal mice carrying the balanced form of the T(X; 16) 16H translocation demonstrated that the structurally normal X chromosome was late replicating (and hence presumably inactive) in 93% of the adult cells and 99% of the 9-day embryo cells, with the X16 chromosome late replicating in the remaining cells. We conclude from these results that in T16H/+ females either there is preferential inactivation of the normal X chromosome or that, if inactivation is random, cell selection takes place before 9 days of development. Two 9-day female embryos with an unbalanced karyotype were also studied; both had two late-replicating chromosomes in most of their cells, one being the chromosome 16X, the other a normal X chromosome. These results, together with the presence of a late-replicating X16 chromosome in T16H/+ adult and fetal mice, support the concept that more than one inactivation center is present on the X chromosome of the mouse because the X16 and the 16x chromosomes can be late replicating.  相似文献   

5.
X-chromosome inactivation in monkey embryos and pluripotent stem cells   总被引:1,自引:0,他引:1  
Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lineage after implantation or upon differentiation of ESCs, resulting in mosaic tissues composed of two cell types carrying either maternal or paternal active X chromosomes. While the status of XCI in human embryos and ICMs remains unknown, majority of human female ESCs show non-random XCI. We demonstrate here that rhesus monkey ESCs also display monoallelic expression and methylation of X-linked genes in agreement with non-random XCI. However, XIST and other X-linked genes were expressed from both chromosomes in isolated female monkey ICMs indicating that ex vivo pluripotent cells retain XaXa. Intriguingly, the trophectoderm (TE) in preimplantation monkey blastocysts also expressed X-linked genes from both alleles suggesting that, unlike the mouse, primate TE lineage does not support imprinted paternal XCI. Our results provide insights into the species-specific nature of XCI in the primate system and reveal fundamental epigenetic differences between in vitro and ex vivo primate pluripotent cells.  相似文献   

6.
X-chromosome inactivation (XCI) is an important mechanism employed by mammalian XX female cells to level X-linked gene expression with that of male XY cells. XCI occurs early in development as the pluripotent cells of the inner cell mass (ICM) in blastocysts successively differentiate into cells of all three germ layers. X-chromosome reactivation (XCR), the reversal of XCI, is critical for germ cell formation as a mechanism to diversify the X-chromosome gene pool. Here we review the characterization of XCR, and further explore its natural occurrence during development and the in vitro models of cellular reprogramming. We also review the key regulators involved in XCI for their role in suppressing the active histone marks and the genes in the active chromosome for their inhibition of X inactivation signals.Key words: X-chromosome reactivation, RNF12, reprogramming, primordial germ cells, iPS cellsX-chromosome inactivation (XCI) is an essential process occurring in female XX cells as a dosage compensation measure during development.1 It ensures balanced X-chromosome-encoded proteins in male and female cells, and occurs randomly during early development, thus accounting for the mosaicism observed in female somatic cells. Once the cell has inactivated one of the X chromosomes, the pattern is maintained throughout the subsequent series of cell divisions. In mice, the paternal inactive X chromosome (Xi) is maintained throughout the early cleavage until the blastocyst stage, where cells of the inner cell mass (ICM) reactivate the inactive X chromosome.2 At subsequent phases of early development, humans and mice share the pattern of XCI. Epiblast cells randomly inactivate one X chromosome, while the primordial germ cells (PGCs) reactivate the Xi during their migration to the genital ridges.36 Interestingly, murine extra-embryonic trophoblast cells show non-random inactivation of the paternal X chromosome maintained in trophectoderm.6,7 This pattern is, however, not conserved, as human trophectoderm cells randomly inactivate the paternal or maternal X chromosome. In addition to the PGCs and early developing embryo, cells cultured under defined conditions or undergoing reprogramming show X-chromosome reactivation (XCR).8 XCI has been extensively studied, while XCR is not well-understood, mainly due to the lack of easily accessible models. Here, we will review the developmental process of XCR and molecular mechanism involved in XCI and XCR.  相似文献   

7.
8.
DNase I sensitivity in facultative and constitutive heterochromatin   总被引:2,自引:0,他引:2  
In situ nick translation allows the detection of DNase I sensitive and insensitive regions in fixed mammalian mitotic chromosomes. We have determined the difference in DNase I sensitivity between the active and inactive X chromosomes inMicrotus agrestis (rodent) cells, along both their euchromatic and constitutive heterochromatic regions. In addition, we analysed the DNase I sensitivity of the constitutive heterochromatic regions in mouse chromosomes. InMicrotus agrestis female cells the active X chromosome is sensitive to DNase I along its euchromatic region while the inactive X chromosome is insensitive except for an early replicating region at its distal end. The late replicating constitutive heterochromatic regions, however, in both the active and inactive X chromosome are sensitive to DNase I. In mouse cells on the other hand, the constitutive heterochromatin is insensitive to DNase I both in mitotic chromosomes and interphase nuclei.  相似文献   

9.
Previous studies on early female mouse embryos revealed the presence of two kinds of inactive X chromosomes, one replicating late and the other early in the DNA synthetic period. The X chromosome that replicates early is of special interest because of its paternal origin, preferential occurrence in trophectoderm and primitive endoderm derivatives, and programmed shift to the late replicator. This study by BrdU labeling and acridine orange fluorescence staining was undertaken to examine whether the inactive X chromosome behaves in a similar manner in other laboratory mammals. In rat embryos the paternal X chromosome was found to show the same behavior in extraembryonic tissues. Early replicating chromosomes were also found in the extraembryonic regions of Chinese hamster and rabbit embryos, although their parental origin could not be determined due to the absent of X chromosome polymorphism in these species. Probably the early replicating X chromosome occurs commonly in mammals. Its functional significance is unknown.  相似文献   

10.
The status of X-chromosome replication was studied in twenty-seven 69,XXY and nine 69,XXX human triploids in which the parental origin of the additional haploid set was known from the study of chromosome heteromorphisms. Among the 69,XXY triploids, fourteen had no late replicating X, two had one late replicating X in all cells examined, and eleven had two populations of cells, one with late replicating X chromosome, and one without any. Among the 69,XXX triploids, four had a single late replicating X, and five had two populations of cells, one with one late replicating X, and one with two late replicating X chromosomes. There was no correlation between the parental origin of the triploidy and the type of X-chromosome inactivation. However the number of late replicating X chromosomes was significantly lower in cultures grown from fetal tissue when compared with those grown from extra-embryonic tissue. In cultures derived from extra-embryonic tissue there was a significant correlation between the gestational age of the sample and the proportion of late replicating X chromosomes. The older the specimen, the greater the number of late replicating X chromosomes.  相似文献   

11.
Treatment with 5-azacytidine (5-aza-C) causes an advance in the time of replication and enhances the DNase-I sensitivity of the inactive X chromosome in Gerbillus gerbillus fibroblasts. We found that these changes were not stably inherited and upon removal of the drug the cells reverted to the original state of one active and one inactive X chromosome. In order to determine whether this reversion was random, we used a cell line of female Microtus agrestis fibroblasts in which the two X chromosomes are morphologically distinguishable. In this work we show that the reversion to a late pattern of replication is not random, and the originally late replicating X chromosome is preferentially reinactivated, suggesting an imprinting-like marking of one or both X chromosomes. The changes in the replication pattern of the X chromosome were associated with changes in total DNA methylation. Double treatment of cells with 5-aza-C did not alter this pattern of euchromatin activation and reinactivation. A dramatic advance in the time of replication of the entire X linked constitutive heterochromatin (XCH) region was however, observed in the doubly treated cells. This change in the replication timing of the XCH occurred in both X chromosomes and was independent of the changes observed in the euchromatic region. These observations suggest the existence of at least two independent regulatory sites which control the timing of replication of two large chromosomal regions.Deceased on 2 Jan. 1987  相似文献   

12.

Background  

Three types of cell lines have been established from mouse blastocysts: embryonic stem (ES) cells, trophoblast stem (TS) cells, and extra-embryonic endoderm (XEN) cells, which have the potential to differentiate into their respective cognate lineages. ES cells can differentiate in vitro not only into somatic cell lineages but into extra-embryonic lineages, including trophectoderm and extra-embryonic endoderm (ExEn) as well. TS cells can be established from ES cells by the artificial repression of Oct3/4 or the upregulation of Cdx2 in the presence of FGF4 on feeder cells. The relationship between these embryo-derived XEN cells and ES cell-derived ExEn cell lines remains unclear, although we have previously reported that overexpression of Gata4 or Gata6 induces differentiation of mouse ES cells into extra-embryonic endoderm in vitro.  相似文献   

13.
The extra-embryonic endoderm lineage plays a major role in the nutritive support of the embryo and is required for several inductive events, such as anterior patterning and blood island formation. Blastocyst-derived embryonic stem (ES) and trophoblast stem (TS) cell lines provide good models with which to study the development of the epiblast and trophoblast lineages, respectively. We describe the derivation and characterization of cell lines that are representative of the third lineage of the blastocyst -extra-embryonic endoderm. Extra-embryonic endoderm (XEN) cell lines can be reproducibly derived from mouse blastocysts and passaged without any evidence of senescence. XEN cells express markers typical of extra-embryonic endoderm derivatives, but not those of the epiblast or trophoblast. Chimeras generated by injection of XEN cells into blastocysts showed exclusive contribution to extra-embryonic endoderm cell types. We used female XEN cells to investigate the mechanism of X chromosome inactivation in this lineage. We observed paternally imprinted X-inactivation, consistent with observations in vivo. Based on gene expression analysis, chimera studies and imprinted X-inactivation, XEN cell lines are representative of extra-embryonic endoderm and provide a new cell culture model of an early mammalian lineage.  相似文献   

14.
Differences between male and female mammals are initiated by embryonic differentiation of the gonad into either a testis or an ovary. However, this may not be the sole determinant. There are reports that embryonic sex differentiation might precede and be independent of gonadal differentiation, but there is little molecular biological evidence for this. To test for sex differences in early-stage embryos, we separated male and female blastocysts using newly developed non-invasive sexing methods for transgenic mice expressing green fluorescent protein and compared the gene-expression patterns. From this screening, we found that the Fthl17 (ferritin, heavy polypeptide-like 17) family of genes was predominantly expressed in female blastocysts. This comprises seven genes that cluster on the X chromosome. Expression analysis based on DNA polymorphisms revealed that these genes are imprinted and expressed from the paternal X chromosome as early as the two-cell stage. Thus, by the time zygotic genome activation starts there are already differences in gene expression between male and female mouse embryos. This discovery will be important for the study of early sex differentiation, as clearly these differences arise before gonadal differentiation.  相似文献   

15.
Common shrews have an XX/XY1Y2 sex chromosome system, with the X chromosome being a translocation (tandem fusion) between the original X and an autosome; in males this autosome is represented by the Y2 chromosome. From G-banded chromosomes, the Y2 is homologous to the long arm and centromeric part of the short arm of the X. The region of the X that is homologous to the Y2 and also the telomeric region of the short arm of the X were found to be early replicating in somatic cells from a female shrew after 5-bromo-2-deoxyuridine (BrdU) treatment in vitro. The remainder of the short arm of the X was shown to be late replicating. Electron microscopic examination of synaptonemal complexes in males at pachytene revealed pairing of the Y2 axis with the long arm of the X, and Y1 with the short arm. At early stages of pachytene, there is apparently extensive nonhomologous pairing between the X and Y1. In essence, the short arm of the shrew X chromosome behaves like a typical eutherian X chromosome (it is inactivated in female somatic cells and is paried with the Y1 during male meiosis) while the long arm behaves like an autosome (escapes the inactivation and pairs with the Y2).  相似文献   

16.
A GFP transgene has been integrated on the proximal part of the mouse X chromosome just distal of Timp and Syn1. During development, this X-linked GFP transgene exhibits widespread green fluorescence throughout the embryonic and adult life of male mice but displays mosaic expression in tissues as a result of X-inactivation in females. In living female embryos, inactivation of the transgene is imprinted in extraembryonic regions and random in the embryo proper, demonstrating that this reporter is behaving in a similar fashion to the majority of X-linked loci, and so provides a vital readout of X chromosome activity. This is observation is further supported in T16H/X female mice harboring the GFP transgene on the normal X chromosome where reporter inactivation is observed in somatic cells. The differential expression of GFP activity facilitates fluorescence activated cell sorting for the purification of GFP+ vs. GFP- cells from female embryonic tissues, thereby allowing access to populations of cells that have kept active a particular X chromosome. By tracking the activity of this X-linked GFP transgene, we discovered that the primary and secondary giant cells of the X/X placenta maintain an active paternal copy of this transgene on the presumed silenced paternal X-chromosome. This finding implies that the imprint on the paternal X chromosome may be relaxed in these trophectodermal derivatives.  相似文献   

17.
In XX female mammals a single X chromosome is inactivated early in embryonic development, a process that is required to equalise X-linked gene dosage relative to XY males. X inactivation is regulated by a cis-acting master switch, the Xist locus, the product of which is a large non-coding RNA that coats the chromosome from which it is transcribed, triggering recruitment of chromatin modifying factors that establish and maintain gene silencing chromosome wide. Chromosome coating and Xist RNA-mediated silencing remain poorly understood, both at the level of RNA sequence determinants and interacting factors. Here, we describe analysis of a novel targeted mutation, Xist(INV), designed to test the function of a conserved region located in exon 1 of Xist RNA during X inactivation in mouse. We show that Xist(INV) is a strong hypomorphic allele that is appropriately regulated but compromised in its ability to silence X-linked loci in cis. Inheritance of Xist(INV) on the paternal X chromosome results in embryonic lethality due to failure of imprinted X inactivation in extra-embryonic lineages. Female embryos inheriting Xist(INV) on the maternal X chromosome undergo extreme secondary non-random X inactivation, eliminating the majority of cells that express the Xist(INV) allele. Analysis of cells that express Xist(INV) RNA demonstrates reduced association of the mutant RNA to the X chromosome, suggesting that conserved sequences in the inverted region are important for Xist RNA localisation.  相似文献   

18.
Using genetic and cytogenetic markers, we assessed early development and X-chromosome inactivation (X-inactivation) in XX mouse androgenones produced by pronuclear transfer. Contrary to the current view, XX androgenones are capable of surviving to embryonic day 7.5, achieving basically random X-inactivation in all tissues including those derived from the trophectoderm and primitive endoderm that are characterized by paternal X-activation in fertilized embryos. This finding supports the hypothesis that in fertilized female embryos, the maternal X chromosome remains active until the blastocyst stage because of a rigid imprint that prevents inactivation, whereas the paternal X chromosome is preferentially inactivated in extra-embryonic tissues owing to lack of such imprint. In spite of random X-inactivation in XX androgenones, FISH analyses revealed expression of stable Xist RNA from every X chromosome in XX and XY androgenonetic embryos from the four-cell to morula stage. Although the occurrence of inappropriate X-inactivation was further suggested by the finding that Xist continues ectopic expression in a proportion of cells from XX and XY androgenones at the blastocyst and the early egg cylinder stage, a replication banding study failed to provide positive evidence for inappropriate X-inactivation at E6. 5.  相似文献   

19.
In order to provide evidence as to whether sex chromatin (SC) of interphase cells is equivalent to the late replicating X chromosome in female mammalian cells, time-lapse cinephotometric and autoradiographic methods were used to give precise data for comparison of the DNA replication patterns of SC with that of each of the X chromosomes throughout the S period. Canine kidney epithelial cells were selected because they have distinct large metacentric X chromosomes and typical SC. Time-lapse cinephotometry was used to avoid possible alteration of DNA synthesis by chemical cell synchronization agents. Determination of the incidence of SC during the stages of the cell life cycle of proliferating cells of the same origin was performed in order hopefully to clarify conflicting reports on the subject. Our results clearly show that time and intensity of the SC replication throughout S period is like that of the late replicating X chromosome and unlike that of the early replicating X chromosome. The incidence of SC in proliferating cells in culture was found to vary with the stage of the cell life cycle, increasing with increasing postmitotic interval — least in G1, greater in S, and greatest in G2. The SC incidence increased strikingly from G1 to S and a less marked increase was observed between S and G2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号