首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Osteoclast formation is controlled by stromal cells/osteoblasts expressing macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL), crucial for osteoclast progenitor cell proliferation, survival and differentiation, and osteoprotegerin (OPG) that inhibits the interaction between RANKL and its receptor RANK. Recent data have strongly indicated that the nervous system plays an important role in bone biology. In the present study, the effects of the neuropeptide vasoactive intestinal peptide (VIP), present in peptidergic skeletal nerve fibers, on the expression of RANKL, OPG, and M-CSF in osteoblasts and stromal cells have been investigated. VIP and pituitary adenylate cyclase-activating polypeptide 38 (PACAP-38), but not secretin, stimulated rankl mRNA expression in mouse calvarial osteoblasts. In contrast, VIP inhibited the mRNA expressions of opg and m-csf, effects shared by PACAP-38, but not by secretin. VIP did not affect rankl, opg, or m-csf mRNA expression in mouse bone marrow stromal cells (BMSCs). The effects by VIP on the mRNA expression of rankl, opg, and m-csf were all potentiated by the cyclic AMP phosphodiesterase inhibitor rolipram. In addition, VIP robustly enhanced the phosphorylation of ERK and the stimulatory effect by VIP on rankl mRNA was inhibited by the MEK1/2 inhibitor PD98059. These observations demonstrate that activation of VPAC(2) receptors in osteoblasts enhances the RANKL/OPG ratio by mechanisms mediated by cyclic AMP and ERK pathways suggesting an important role for VIP in bone remodeling.  相似文献   

2.
IL-6, leukemia inhibitory factor (LIF), and oncostatin M (OSM) are IL-6-type cytokines that stimulate osteoclast formation and function. In the present study, the resorptive effects of these agents and their regulation of receptor activator of NF-kappaB ligand (RANKL), RANK, and osteoprotegerin (OPG) were studied in neonatal mouse calvaria. When tested separately, neither human (h) IL-6 nor the human soluble IL-6R (shIL-6R) stimulated bone resorption, but when hIL-6 and the shIL-6R were combined, significant stimulation of both mineral and matrix release from bone explants was noted. Semiquantitative RT-PCR showed that hIL-6 plus shIL-6R enhanced the expression of RANKL and OPG in calvarial bones, but decreased RANK expression. Human LIF, hOSM, and mouse OSM (mOSM) also stimulated 45Ca release and enhanced the mRNA expression of RANKL and OPG in mouse calvaria, but had no effect on the expression of RANK. In agreement with the RT-PCR analyses, ELISA measurements showed that both hIL-6 plus shIL-6R and mOSM increased RANKL and OPG proteins. 1,25-Dihydroxyvitamin D3 (D3) also increased the RANKL protein level, but decreased the protein level of OPG. OPG inhibited 45Ca release stimulated by RANKL, hIL-6 plus shIL-6R, hLIF, hOSM, mOSM, and D3. An Ab neutralizing mouse gp130 inhibited 45Ca release induced by hIL-6 plus shIL-6R. These experiments demonstrated stimulation of calvarial bone resorption and regulation of mRNA and protein expression of RANKL and OPG by D3 and IL-6 family cytokines as well as regulation of RANK expression in preosteoclasts/osteoclasts of mouse calvaria by D3 and hIL-6 plus shIL-6R.  相似文献   

3.
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of nuclear factor kappaB ligand (RANKL), an inducer of osteoclastogenesis via its receptor RANK. We recently demonstrated that OPG also exerts a direct effect in osteoclasts by regulating protease expression. Herein, we showed that OPG-induced pro-matrix metalloproteinase-9 activity was abolished by ras/MAPK inhibitors in purified osteoclasts. OPG induced the phosphorylation of p38 and ERK1/2 in RAW264.7 cells. Only p38 activation was totally abolished by a blocking anti-RANKL antibody or an excess of RANKL. Surface plasmon resonance experiments revealed that RANK, RANKL and OPG are able to form a tertiary complex. These results suggested a potential formation of a tertiary complex RANK-RANKL-OPG on osteoclasts. Thus, OPG is not only a soluble decoy receptor for RANKL but must be also considered as a direct effector of osteoclast functions.  相似文献   

4.
Macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL) induce the differentiation of bone marrow macrophages (BMMs) into osteoclasts. To delineate mechanisms involved, the effect of M-CSF on the production of osteoprotegerin (OPG), decoy receptor of RANKL, in BMMs was investigated. Mouse bone marrow cells were cultured with M-CSF for 4 days and adherent cells formed were used as BMMs. BMMs were cultured with or without M-CSF, and analyzed for expression of OPG and receptor activator of NF-kappaB (RANK; receptor for RANKL) mRNAs by real-time polymerase chain reaction and secretion of OPG by enzyme-linked immunosorbent assay. BMMs expressed macrophage markers, CD115 (c-fms), Mac-1 and F4/80, and showed phagocytotic activity. In addition, BMMs expressed OPG mRNA and secreted OPG into medium. M-CSF inhibited both the OPG mRNA expression and the OPG secretion dose-dependently and reversibly. The expression of RANK mRNA was not significantly affected by M-CSF. The results showed that M-CSF suppresses the OPG production in BMMs, which may increase the sensitivity of BMMs to RANKL.  相似文献   

5.
Receptor activator of nuclear factor-kB ligand (RANKL), a well-known membrane-bound molecule expressed on osteoblasts and bone marrow stromal cells, is believed to induce osteoclast differentiation and activation by binding to the receptor activator of nuclear factor-kB (RANK), which is expressed on the surface of osteoclast lineage cells. This induction is inhibited by osteoprotegerin (OPG) that is secreted by osteoblast lineage and acts as a decoy receptor of RANKL. Currently the essential role of the OPG/RANKL/RANK system in the process of osteoclast maturation, as well as activation, has been well established, and the majority of bone resorption regulators control osteoclast formation and activation through their effects on this system and especially on the relative expression levels of RANKL and OPG [1].  相似文献   

6.
Functions of RANKL/RANK/OPG in bone modeling and remodeling   总被引:1,自引:0,他引:1  
The discovery of the RANKL/RANK/OPG system in the mid 1990s for the regulation of bone resorption has led to major advances in our understanding of how bone modeling and remodeling are regulated. It had been known for many years before this discovery that osteoblastic stromal cells regulated osteoclast formation, but it had not been anticipated that they would do this through expression of members of the TNF superfamily: receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), or that these cytokines and signaling through receptor activator of NF-κB (RANK) would have extensive functions beyond regulation of bone remodeling. RANKL/RANK signaling regulates osteoclast formation, activation and survival in normal bone modeling and remodeling and in a variety of pathologic conditions characterized by increased bone turnover. OPG protects bone from excessive resorption by binding to RANKL and preventing it from binding to RANK. Thus, the relative concentration of RANKL and OPG in bone is a major determinant of bone mass and strength. Here, we review our current understanding of the role of the RANKL/RANK/OPG system in bone modeling and remodeling.  相似文献   

7.
8.
9.
The discovery of the receptor activator of nuclear factor-kappaB ligand (RANKL)/RANK/osteoprotegerin (OPG) system and its role in the regulation of bone resorption exemplifies how both serendipity and a logic-based approach can identify factors that regulate cell function. Before this discovery in the mid to late 1990s, it had long been recognized that osteoclast formation was regulated by factors expressed by osteoblast/stromal cells, but it had not been anticipated that members of the tumor necrosis factor superfamily of ligands and receptors would be involved or that the factors involved would have extensive functions beyond bone remodeling. RANKL/RANK signaling regulates the formation of multinucleated osteoclasts from their precursors as well as their activation and survival in normal bone remodeling and in a variety of pathologic conditions. OPG protects the skeleton from excessive bone resorption by binding to RANKL and preventing it from binding to its receptor, RANK. Thus, RANKL/OPG ratio is an important determinant of bone mass and skeletal integrity. Genetic studies in mice indicate that RANKL/RANK signaling is also required for lymph node formation and mammary gland lactational hyperplasia, and that OPG also protects arteries from medial calcification. Thus, these tumor necrosis factor superfamily members have important functions outside bone. Although our understanding of the mechanisms whereby they regulate osteoclast formation has advanced rapidly during the past 10 years, many questions remain about their roles in health and disease. Here we review our current understanding of the role of the RANKL/RANK/OPG system in bone and other tissues.  相似文献   

10.
Vitamin D and bone   总被引:5,自引:0,他引:5  
It is now well established that supraphysiological doses of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] stimulate bone resorption. Recent studies have established that osteoblasts/stromal cells express receptor activator of NF-kappaB ligand (RANKL) in response to several bone-resorbing factors including 1alpha,25(OH)(2)D(3) to support osteoclast differentiation from their precursors. Osteoclast precursors which express receptor activator of NF-kappaB (RANK) recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into osteoclasts in the presence of macrophage-colony stimulating factor (M-CSF). Osteoprotegerin (OPG) acts as a decoy receptor for RANKL. We also found that daily oral administration of 1alpha,25(OH)(2)D(3) for 14 days to normocalcemic thyroparathyroidectomized (TPTX) rats constantly infused with parathyroid hormone (PTH) inhibited the PTH-induced expression of RANKL and cathepsin K mRNA in bone. The inhibitory effect of 1alpha,25(OH)(2)D(3) on the PTH-induced expression of RANKL mRNA occurred only with physiological doses of the vitamin. Supraphysiological doses of 1alpha,25(OH)(2)D(3) increased serum Ca and expression of RANKL in vivo in the presence of PTH. These results suggest that the bone-resorbing activity of vitamin D does not occur at physiological dose levels in vivo. A certain range of physiological doses of 1alpha,25(OH)(2)D(3) rather suppress the PTH-induced bone resorption in vivo, supporting the concept that 1alpha,25(OH)(2)D(3) or its derivatives are useful for the treatment of various metabolic bone diseases such as osteoporosis and secondary hyperparathyroidism.  相似文献   

11.
LPS is a potent stimulator of bone resorption in inflammatory diseases. The mechanism by which LPS induces osteoclastogenesis was studied in cocultures of mouse osteoblasts and bone marrow cells. LPS stimulated osteoclast formation and PGE(2) production in cocultures of mouse osteoblasts and bone marrow cells, and the stimulation was completely inhibited by NS398, a cyclooxygenase-2 inhibitor. Osteoblasts, but not bone marrow cells, produced PGE(2) in response to LPS. LPS-induced osteoclast formation was also inhibited by osteoprotegerin (OPG), a decoy receptor of receptor activator of NF-kappaB ligand (RANKL), but not by anti-mouse TNFR1 Ab or IL-1 receptor antagonist. LPS induced both stimulation of RANKL mRNA expression and inhibition of OPG mRNA expression in osteoblasts. NS398 blocked LPS-induced down-regulation of OPG mRNA expression, but not LPS-induced up-regulation of RANKL mRNA expression, suggesting that down-regulation of OPG expression by PGE(2) is involved in LPS-induced osteoclast formation in the cocultures. NS398 failed to inhibit LPS-induced osteoclastogenesis in cocultures containing OPG knockout mouse-derived osteoblasts. IL-1 also stimulated PGE(2) production in osteoblasts and osteoclast formation in the cocultures, and the stimulation was inhibited by NS398. As seen with LPS, NS398 failed to inhibit IL-1-induced osteoclast formation in cocultures with OPG-deficient osteoblasts. These results suggest that IL-1 as well as LPS stimulates osteoclastogenesis through two parallel events: direct enhancement of RANKL expression and suppression of OPG expression, which is mediated by PGE(2) production.  相似文献   

12.
To better understand the complex roles of transforming growth factor-beta (TGF-beta) in bone metabolism, we examined the impact of a range of TGF-beta concentrations on osteoclast differentiation. In co-cultures of support cells and spleen or marrow osteoclast precursors, low TGF-beta concentrations stimulated while high concentrations inhibited differentiation. We investigated the influences of TGF-beta on macrophage colony stimulating factor (M-CSF), receptor activator of NF-kappaB ligand (RANKL), and osteoprotegerin (OPG) expression and found a dose dependent inhibition of M-CSF expression. RANKL expression was elevated at low TGF-beta concentrations with a less dramatic increase in OPG. Addition of OPG blocked differentiation at the stimulatory TGF-beta dose. Thus, low TGF-beta concentrations elevated the RANKL/OPG ratio while high concentrations did not, supporting that, at low TGF-beta concentrations, there is sufficient M-CSF and a high RANKL/OPG ratio to stimulate differentiation. At high TGF-beta concentrations, the RANKL/OPG ratio and M-CSF expression were both repressed and there was no differentiation. We examined whether TGF-beta-mediated repression of osteoclasts differentiation is due to these changes by adding M-CSF and/or RANKL and did not observe any impact on differentiation repression. We studied direct TGF-beta impacts on osteoclast precursors by culturing spleen or marrow cells with M-CSF and RANKL. TGF-beta treatment dose-dependently stimulated osteoclast differentiation. These data indicate that low TGF-beta levels stimulate osteoclast differentiation by impacting the RANKL/OPG ratio while high TGF-beta levels repress osteoclast differentiation by multiple avenues including mechanisms independent of the RANKL/OPG ratio or M-CSF expression regulation.  相似文献   

13.
骨是一种动态更新的组织,它不断进行骨吸收(bone resorption)与骨形成(bone formation)的平衡,这个过程称之为骨重建(bone remodeling).核因子κB受体活化因子配体(receptor activator of nuclear factor κB ligand,RANKL)是骨吸收和骨形成耦联的关键,具有诱导破骨细胞(osteoclast, OC)生成、活化,抑制破骨细胞凋亡的作用.RANKL最初发现于活化的T细胞,但骨重建过程中RANKL主要来源于骨细胞、成骨细胞和骨髓基质细胞.RANKL/核因子κB受体活化因子(receptor activator of nuclear factor κB,RANK)/骨保护素(osteoprotegerin, OPG)信号通路在成骨细胞调控破骨细胞生成的过程中起着重要的调节作用,是维持骨重建平衡的关键.本文就RANKL及其在骨中的分子作用机制作一综述.  相似文献   

14.
Nitric oxide (NO) is a multifunctional signaling molecule and a key vasculoprotective and potential osteoprotective factor. NO regulates normal bone remodeling and pathological bone loss in part through affecting the recruitment, formation, and activity of bone-resorbing osteoclasts. Using murine RAW 264.7 and primary bone marrow cells or osteoclasts formed from them by receptor activator of NF-kappaB ligand (RANKL) differentiation, we found that inducible nitric-oxide synthase (iNOS) expression and NO generation were stimulated by interferon (IFN)-gamma or lipopolysaccharide, but not by interleukin-1 or tumor necrosis factor-alpha. Surprisingly, iNOS expression and NO release were also triggered by RANKL. This response was time- and dose-dependent, required NF-kappaB activation and new protein synthesis, and was specifically blocked by the RANKL decoy receptor osteoprotegerin. Preventing RANKL-induced NO (via iNOS-selective inhibition or use of marrow cells from iNOS-/- mice) increased osteoclast formation and bone pit resorption, indicating that such NO normally restrains RANKL-mediated osteoclastogenesis. Additional studies suggested that RANKL-induced NO inhibition of osteoclast formation does not occur via NO activation of a cGMP pathway. Because IFN-beta is also a RANKL-induced autocrine negative feedback inhibitor that limits osteoclastogenesis, we investigated whether IFN-beta is involved in this novel RANKL/iNOS/NO autoregulatory pathway. IFN-beta was induced by RANKL and stimulated iNOS expression and NO release, and a neutralizing antibody to IFN-beta inhibited iNOS/NO elevation in response to RANKL, thereby enhancing osteoclast formation. Thus, RANKL-induced IFN-beta triggers iNOS/NO as an important negative feedback signal during osteoclastogenesis. Specifically targeting this novel autoregulatory pathway may provide new therapeutic approaches to combat various osteolytic bone diseases.  相似文献   

15.
Receptor activator of NF-kappaB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) play essential roles in bone metabolism. RANKL binds to RANK, which is expressed by osteoclasts whereas OPG acts as its decoy receptor blocking the RANK-RANKL interaction. OPG/RANK/RANKL are produced by variety of tissues including epithelial and mesenchymal cells. However, the role of RANKL/OPG in thyroid pathophysiology remains unclear. The aim of this study was to determine the expression pattern of RANK/RANKL/OPG in primary neoplastic thyroid lesions and in lymph node metastases. 27 specimens from total thyroidectomy were studied by immunohistochemistry: 9 papillary carcinomas (PC), 9 medullary carcinomas (MC), 9 macrovesicular adenomas (MA). Immunohistochemical evidence of RANKL was found in 30 % of MC, 22% of PC while RANKL has never been detected in PC. The expression of RANK is closely related to RANKL. OPG was restricted to the cytoplasm of epithelial in 1 MA and 1 MC. In contrast to pathological tissues, any expression of OPG/RANK/RANKL was detected in healthy thyroid tissue. This work reveals for the first time that OPG/RANK/RANKL are expressed in the pathological thyroid gland by follicular cells, by malignant parafollicular cells as well as in metastatic lymph node microenvironment. Thus OPG/RANK/RANKL molecular triad might play a role during pathogenesis of follicular and parafollicular tumors.  相似文献   

16.
Receptor activator of NF-kappaB (RANK) and its ligand (RANKL) are essential for osteoclast formation, function, and survival. Osteoprotegerin (OPG) inhibits RANK signaling by sequestering RANKL. This study evaluated the antiosteoclast and immunoregulatory effects of mouse rRANK-Fc, which, similar to OPG, can bind RANKL. The effect of RANKL inhibition by RANK-Fc on osteoclast function was determined by inhibition of vitamin D(3) (1,25(OH)(2)D(3))-induced hypercalcemia. Mice were injected with a single dose of 0, 10, 100, 500, or 1000 microg of RANK-Fc; 100 microg of OPG-Fc; or 5 microg of zoledronate 2 h before 1,25(OH)(2)D(3) challenge on day 0, and sacrificed on days 1, 2, 4, 6, 8, 12, 16, and 20. RANK-Fc doses of 100 or 500 microg were tested in a mouse respiratory influenza virus host-resistance model. A single dose of RANK-Fc > or =100 microg suppressed elevation of serum calcium levels and suppressed the bone turnover marker serum pyridinoline at day 4 and later time points, similar to those observed with OPG-Fc and zoledronate (p < or = 0.01 vs controls). By day 6, both immature and mature osteoclasts were depleted by high doses of RANK-Fc (500 and 1000 microg) or 100 microg of OPG-Fc. RANK-Fc doses of 100 or 500 microg had no detectable effect on immune responses to influenza infection, as measured by activation of cytotoxic T cell activity, influenza-specific IgG response, and virus clearance. RANK-Fc inhibition of RANKL has antiosteoclast activity at doses that have no detectable immunoregulatory activity, suggesting that RANKL inhibitors be further studied for their potential to treat excess bone loss.  相似文献   

17.
p38 mitogen-activated protein kinase (MAPK) acts downstream in the signaling pathway that includes receptor activator of NF-κB (RANK), a powerful inducer of osteoclast formation and activation. We investigated the role of p38 MAPK in parathyroid hormone related protein (PTHrP)-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo. The ability of FR167653 to inhibit osteoclast formation was evaluated by counting the number of tartrate-resistant acid phosphatase positive multinucleated cells (TRAP-positive MNCs) in in vitro osteoclastgenesis assays. Its mechanisms were evaluated by detecting the expression level of c-Fos and nuclear factor of activated T cells c1 (NFATc1) in bone marrow macrophages (BMMs) stimulated with sRANKL and M-CSF, and by detecting the expression level of osteoprotegerin (OPG) and RANKL in bone marrow stromal cells stimulated with PTHrP in the presence of FR167653. The function of FR167653 on bone resorption was assessed by measuring the bone resorption area radiographically and by counting osteoclast number per unit bone tissue area in calvaria in a mouse model of bone resorption by injecting PTHrP subcutaneously onto calvaria. Whole blood ionized calcium levels were also recorded. FR167653 inhibited PTHrP-induced osteoclast formation and PTHrP-induced c-Fos and NFATc1 expression in bone marrow macrophages, but not the expression levels of RANKL and OPG in primary bone marrow stromal cells treated by PTHrP. Furthermore, bone resorption area and osteoclast number in vivo were significantly decreased by the treatment of FR167653. Systemic hypercalcemia was also partially inhibited. Inhibition of p38 MAPK by FR167653 blocks PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo, suggesting that the p38 MAPK signaling pathway plays a fundamental role in PTHrP-induced osteoclastic bone resorption.  相似文献   

18.
Although high inorganic phosphate (Pi) concentration in culture media directly inhibits generation of new osteoclasts and also inhibits bone resorption by mature osteoclasts, its precise mechanism and the physiological role have not been elucidated. The present study was performed to investigate these issues. Increase in extracellular Pi concentration ([Pi](e)) (2.5-4 mM) concentration dependently inhibited 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] or parathyroid hormone (PTH)-(1-34)-induced osteoclast-like cell formation from unfractionated bone cells in the presence of stromal cells. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited 1,25(OH)(2)D(3)-, PTH-(1-34)-, or receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF)-induced osteoclast-like cell formation from hemopoietic blast cells in the absence of stromal cells. Increase in [Pi](e) (2.5-4 mM) dose dependently stimulated the expression of osteoprotegerin (OPG) mRNA and increased the expression of OPG mRNA suppressed by PTH-(1-34) or 1,25(OH)(2)D(3) in unfractionated bone cells, while it did not affect RANKL mRNA. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited the bone-resorbing activity of isolated rabbit osteoclasts. Increase in [Pi](e) (4 mM) induced the apoptosis of isolated rabbit osteoclasts while it did not affect the apoptosis of osteoclast precursor cells and mouse macrophage-like cell line C7 cells that can differentiate into osteoclasts in the presence of RANKL and M-CSF. These results indicate that increase in [Pi](e) inhibits osteoclast differentiation both by up-regulating OPG expression and by direct action on osteoclast precursor cells. It is also indicated that increase in [Pi](e) inhibits osteoclastic activity at least in part by the direct induction of apoptosis of osteoclasts.  相似文献   

19.
Wang BL  Liang H  Zheng F  Li XX  Liu YB  Dai CL 《生理学报》2007,59(2):169-174
新近发现的核因子κB受体活化因子配基(receptor activator of nuclear factor-κB ligand,RANKL),核因子κB受体活化因子(receptor activator ofnuclear factor-κB,RANK)/护骨素(osteoprotegerin,OPG)细胞因子系统提高了对破骨细胞生物学和骨稳态分子水平的认识。RANKL与RANK之间的相互作用决定了破骨细胞的分化。本研究通过体外实验评价可溶性RANK (soluble RANK,sRANK)是否可作为RANKL的拈抗剂下调破骨细胞生成和骨吸收陷窝的形成。构建sRANK的原核表达载体,转化入大肠杆菌表达菌株Origami B(DE3),成功表达了重组蛋白,亲和层析进行纯化。重组sRANK以剂量依赖方式抑制由甲状旁腺激素(parathyroid hormone,PTH)诱导的破骨细胞生成和骨吸收陷窝形成。RT-PCR实验证实,sRANK可显著抑制PTH刺激的小鼠骨髓细胞碳酸苷酶Ⅱ和抗酒石酸酸性磷酸酶mRNA的表达。结果表明,sRANK具有抗骨吸收功能,可能成为一种治疗以骨吸收加强为特征的骨疾病的新方法。  相似文献   

20.
The emergence of the molecular triad osteoprotegerin (OPG)/Receptor Activator of NF-kB (RANK)/RANK Ligand (RANKL) has helped elucidate a key signalling pathway between stromal cells and osteoclasts. The interaction between RANK and RANKL plays a critical role in promoting osteoclast differentiation and activation leading to bone resorption. OPG is a soluble decoy receptor for RANKL that blocks osteoclast formation by inhibiting RANKL binding to RANK. The OPG/RANK/RANKL system has been shown to be abnormally regulated in several malignant osteolytic pathologies such as multiple myeloma [MM, where enhanced RANKL expression (directly by tumour cells or indirectly by stromal bone cells or T-lymphocytes)] plays an important role in associated bone destruction. By contrast, production of its endogenous counteracting decoy receptor OPG is either inhibited or too low to compensate for the increase in RANKL production. Therefore, targeting the OPG/RANK/RANKL axis may offer a novel therapeutic approach to malignant osteolytic pathologies. In animal models, OPG or soluble RANK was shown both to control hypercalcaemia of malignancy and the establishment and progression of osteolytic metastases caused by various malignant tumours. To this day, only one phase I study has been performed using a recombinant OPG construct that suppressed bone resorption in patients with multiple myeloma or breast carcinoma with radiologically confirmed bone lesions. RANK-Fc also exhibits promising therapeutic effects, as revealed in animal models of prostate cancer and multiple myeloma. If the animal results translate to similar clinical benefits in humans, using RANK-Fc or OPG may yield novel and potent strategies for treating patients with established or imminent malignant bone diseases and where standard therapeutic regimens have failed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号