首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of drought on nitrogen fixation in soybean root nodules   总被引:3,自引:0,他引:3  
Soybean plants [Glycine max (L.) Merr.] were grown in silica sand and were drought stressed for a 4 week period during reproductive development and without any mineral N supply in order to maximize demand for fixed nitrogen. A strain of Bradyrhizobium japonicum that forms large quantities of polysaccharide in nodules was used to determine whether or not the supply of reduced carbon to bacteroids limits nitrogenase activity. A depression of 30–40% in nitrogen content in leaves and pods of stressed plants indicated a marked decline in nitrogen fixation activity during the drought period. A 50% increase in the accumulation of bacterial polysaccharide in nodules accompanied this major decrease in nitrogen fixation activity and this result indicates that the negative impact of drought on nodules was not due to a depression of carbon supply to bacteroids. The drought treatment resulted in a statistically significant increase in N concentration in leaves and pods. Because N concentration and chlorophyll concentration in leaves were not depressed, there was no evidence of nitrogen deficiency in drought‐stressed plants, and this result indicates that the negative impact of drought on nodule function was not the cause of the depression of shoot growth. At the end of the drought period, the concentration of carbohydrates, amino nitrogen, and ureides was significantly increased in nodules on drought‐stressed plants. The overall results support the view that, under drought conditions, nitrogen fixation activity in nodules was depressed because demand for fixed N to support growth was lower.  相似文献   

2.
3.
Membrane lipids in soybean nodules may undergo oxidative degradation resulting in the loss of membrane structural integrity and physiological activities. One of the final products of lipid peroxidation is malondialdehyde (MDA), which can react with thiobarbituric acid (TBA) in vitro to form a chromogenic adduct, a Schiff base product that can be measured spectrophotometrically. MDA formation was quantified in the nodules as well as in the adjacent root tissue. Lipid peroxidation was initially high in soybean nodules induced by Bradyrhizobium japonicum, but sharply declined following an increase in both leghemoglobin content and nitrogen fixation rate. Lipid peroxidation was 2 to 4 times higher in the nodules than in their corresponding adjoining root tissue. Malondialdehyde levels in ineffective nodules were 1.5 times higher than those in effective nodules. MDA formation was also shown to occur in the ‘leghemoglobin-free’ cytosolic fraction, the ‘leghemoglobin’ fraction, and the nodule tissue pellet. Antioxidants, such as reduced ascorbic acid, glutathione, and 8-hydroxyquinoline, caused a partial suppression of lipid peroxidation, whereas ferrous sulfate, hydrogen peroxide, iron EDTA, disodium-EDTA, and β-carotene induced MDA formation. In contrast, quenchers of oxygen free radicals such as HEPES, MES, MOPS, PIPES, phenylalanine, Tiron, thiourea, sodium azide, and sodium cyanide (uncouplers of oxidative phosphorylation) caused somewhere between a 12 to 70 percnt; reduction in MDA production. TBA-reactive products were formed despite the incorporation of superoxide dismutase, proxidase, and catalase into the reaction mixture.  相似文献   

4.
The appearance of enzymes involved in the formation of ureides, allantoin, and allantoic acid, from inosine 5′-monophosphate was analyzed in developing root nodules of soybean (Glycine max). Concomitant with development of effective nodules, a substantial increase in specific activities of the enzymes 5′-nucleotidase (35-fold), purine nucleosidase (10-fold), xanthine dehydrogenase (25-fold), and uricase (200-fold), over root levels was observed. The specific activity of allantoinase remained constant during nodule development. With ineffective nodules the activities were generally lower than in effective nodules; however, the activities of 5′-nucleotidase and allantoinase were 2-fold higher in ineffective nodules unable to synthesize leghemoglobin than in effective nodules. Since the expression of uricase has been shown to be regulated by oxygen (K Larsen, BU Jochimsen 1986 EMBO J 5: 15-19), the expression of the remaining enzymes in the purine catabolic pathway were tested in response to variations in O2 concentration in sterile soybean callus tissue. Purine nucleosidase responded to this treatment, exhibiting a 4-fold increase in activity around 2% O2. 5′-Nucleotidase, xanthine dehydrogenase, and allantoinase remained unaffected by variations in the O2 concentration. Hence, the expression of two enzymes involved in ureide formation, purine nucleosidase and uricase, has been demonstrated to be influenced by O2 concentration.  相似文献   

5.
6.
The photobleaching herbicide, acifluorfen-methyl (AFM), has been reported to be an inhibitor of the heme and chlorophyll biosynthetic enzyme protoporphyrinogen oxidase (Protox) in several plant species. However, AFM had no effect on the levels of Protox activity measured in a mitochondrial fraction from soybean roots. In contrast, AFM inhibited Protox activity in etioplasts from barley leaves and in mitochondria from barley roots, but the extent of inhibition varied depending upon the assay conditions and was maximal only in the presence of 5 mM dithiothreitol (DTT). AFM inhibition was enhanced by preincubation of barley organelle extract in the presence of DTT. Preincubation of barley extract with DTT and AFM together (but not with AFM alone) caused extensive enzyme inhibition which was not reversible by dialysis. These findings have implications for the mechanism of AFM action and for the differential effect of these herbicides on crop and weed species. AFM had no effect on the Protox activity of membranes from free-living bacterial cell of Bradyrhizobium japonicum or Escherichia coli, or on the high levels of Protox activity associated with the plant-derived membrane surrounding the symbiotic bacteria within the soybean root nodule.  相似文献   

7.
Ammonia, the primary product of nitrogen fixation is rapidly incorporated into a number of amino acids such as glutamate and aspartate. A novel enzyme system glutamine: 2-oxoglutarate aminotransferase oxidoreductase, which probably has an important role in ammonia assimilation has been detected, in the present studies, in the rhizobial fraction of soybean root nodules and in Rhizobium japonicum grown in culture. The role of this latter enzyme and other enzymes such as glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in ammonia assimilation by soybean nodules is discussed.  相似文献   

8.
Summary The respiration rate of individual soybean (Glycine max Merr.) nodules was measured as a function of pO2 and temperature. At 23°, as the pO2 was increased from 0.1 to 0.9 atm, there was a linear increase in respiration rate. At 13°, similar results were obtained, except that there was an abrupt saturation of respiration at approximately 0.5 atm pO2. When measurements were made on the same nodule, the rate of increase in respiration with pO2 was the same at 13° and 23°. Additional results were that 5% CO in the gas phase had no effect on respiration, except for a small decrease in the pO2 at which respiration became saturated. Also, nodules still attached to the soybean root displayed the same respiratory behavior as detached nodules. A model for oxygen transport in the nodule is presented which explains these results quantitatively. The essence of the model is that the respiration rate of the central tissue of the nodule is almost entirely determined by the rate of oxygen diffusion to the respiratory enzymes. Evidence is given that the nodule cortex is the site of almost all of the resistance to oxygen diffusion within the nodule.  相似文献   

9.
After a 2 h exposure of intact soybean nodules to high concentrations of NaCl (100mol m?3) or oxygen (8OkPa O2), morphometric computations carried out using an image analysis technique on semi-thin sections showed that both treatments induced a decrease in the area of the inner-cortex cells, which were then characterized by a tangential elongation. In contrast, no significant change in area occurred in the middle-cortex cells although their elongation decreased. Electron microscopic observations showed that in the inner-cortex cells changes included the presence of wall infoldings, an enlarged periplasmic space and a lobate nucleus whose chromatin distribution differed from that of the control. Structural changes also occurred in the endoplasmic reticulum, microbodies, mitochondria and plastids. From several of these changes, which are similar to those noted in osmocontractil cells in response to external stimuli, it can be hypothesized that the inner cortex may provide a potential mechanism for the control of oxygen diffusion through the nodules.  相似文献   

10.
Metabolites that accumulated in soybean [Glycine max (L.) Merr.]nodules after inhibition of nitrogen fixation were analysedto determine what carbon compounds the bacteroids might obtainfrom their host. Exposure of roots of intact soybean plantsto 100% O2 for 5 min caused a decrease in acetylene reductionactivity within 10 min and then the activity recovered onlyslowly. Analysis of carbohydrates, organic acids, volatile compoundsand amino acids in extracts of nodules revealed that succinate,malate and alanine all accumulated within 10 min after treatmentwith O2. The concentrations of sucrose, acetone, tyrosine, valine,isoleucine, leucine, and ornithine in the nodules increasedslowly after such treatment. The results are discussed in termsof carbon sources for supporting nitrogen fixation of soybeanbacteroids. Key words: Glycine max, carbon metabolism, nitrogen fixation, nodules  相似文献   

11.
Vacuolation and infection thread in root nodules of soybean   总被引:1,自引:0,他引:1  
A K Bal 《Cytobios》1985,42(165):41-47
Profuse vacuolation takes place in the soybean root nodule cells where infection threads carry rhizobia. After the rhizobia are released the disappearance of the infection thread is attributed to its degradation within large vacuoles which result from fusion of small vacuoles.  相似文献   

12.
Nitrogen fixation in breis of soybean root nodules   总被引:2,自引:0,他引:2  
  相似文献   

13.
14.
Reduction of ferric leghemoglobin in soybean root nodules   总被引:1,自引:0,他引:1       下载免费PDF全文
Lee KK  Klucas RV 《Plant physiology》1984,74(4):984-988
Callus tissue cultures were developed from apical meristem regions of tumor-like ineffective root nodules of alfalfa. Callus growth was a function of tissue source and hormone composition and concentration. Callus derived from ineffective nodules also were shown not to contain Rhizobium meliloti.

Glutamate dehydrogenase, glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase and phosphoenolpyruvate carboxylase activities were present in callus cultures and in the respective nodule source used for callus induction. The mean specific activity of all enzymes evaluated was higher in callus cultures than in ineffective nodules. Quantitative but not qualitative differences in enzyme activities were evident between ineffective nodules and callus derived from these nodules. Tissue cultures derived from ineffective nodules may provide a model system to evaluate host plant-Rhizobium interactions.

  相似文献   

15.
Nicotinate has been postulated to interfere with the binding of O2 to ferrous leghemoglobin in soybean (Glycine max) root nodules. For such a function, the levels of nicotinate in nodules must be sufficiently high to bind a significant amount of leghemoglobin. We have measured levels of nicotinate, nicotinamide, and leghemoglobin in soybean nodules from plants 34 to 73 days after planting in a glasshouse. On a per gram nodule fresh weight basis, levels between 10.4 and 21 nanomoles for nicotinate, 19.2 and 37.8 nanomoles for nicotinamide, and 170 to 280 nanomoles for leghemoglobin were measured. Even if all the nicotinate were bound to ferrous leghemoglobin, only 11% or less of the total leghemoglobin would be unavailable for binding O2. Using the measured levels of nicotinate and a pH of 6.8 in the cytosol of presenescent soybean nodules, we estimate that the proportion of ferrous leghemoglobin bound to nicotinate in such nodules would be less than 1%. These levels of nicotinate are too low to interfere with the reaction between ferrous leghemoglobin and O2 in soybean root nodules.  相似文献   

16.
Plants submitted to O2 deficiency present a series of biochemical modifications, affecting overall root metabolism. Here, the effect of hypoxia on the metabolic fate of 15N derived from 15NO3 ?, 15NO2 ? and 15NH4 + in isolated soybean root segments was followed by gas chromatography–mass spectrometry, to provide a detailed analysis of nitrogen assimilation and amino acid biosynthesis under hypoxia. O2 deficiency decreased the uptake of the nitrogen sources from the solution, as ratified by the lower 15NO3 ? and 15NH4 + enrichment in the root segments. Moreover, analysis of endogenous NO2 ? and 15NH4 + levels suggested a slower metabolism of these ions under hypoxia. Accordingly, regardless of the nitrogen source, hypoxia reduced total 15N incorporation into amino acids. Analysis of 15N enrichment patterns and amino acid levels suggest a redirecting of amino acid metabolism to alanine and γ-aminobutyric acid synthesis under hypoxia and a differential sensitivity of individual amino acid pathways to this stress. Moreover, the role of glutamine synthetase in nitrogen assimilation both under normoxia and hypoxia was ratified. In comparison with 15NH4 +, 15NO2 ? assimilation into amino acids was more strongly affected by hypoxia and NO2 ? accumulated in root segments during this stress, indicating that nitrite reductase may be an additional limiting step. NO2 ? accumulation was associated with a higher nitric oxide emission. 15NO3 ? led to much lower 15N incorporation in both O2 conditions, probably due to the limited nitrate reductase activity of the root segments. Overall, the present work shows that profound alterations of root nitrogen metabolism occur during hypoxic stress.  相似文献   

17.
Xanthine dehydrogenase (XDH, EC 1.2.1.37) was purified from root nodules of soybean (Glycine max) and used to prepare a polyclonal rabbit antiserum. Monospecificity of this antiserum was ascertained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the immunoprecipate. During root nodule development of soybean, only one form of XDH was detected on an immunological basis. Titration of XDH by immunoelectrophoresis showed that a remarkable increase in the amount of XDH occurred between two and four weeks after inoculation, in parallel with the increase in enzyme activity. Localization of XDH by immunofluorescence indicated that the enzyme was present exclusively in uninfected cells where it appeared to be associated with discrete organellelsAbbreviations IgG immunoglobulin G - SDS-PAGE sodium dodecyl sulfate — polyacrylamide gel electrophoresis - XDH xanthine dehydrogenase  相似文献   

18.
19.
The literature concerning the metabolism of carbon compounds during the reduction, assimilation and translocation of nitrogen in root nodules of leguminous plants is reviewed. The reduction of dinitrogen requires an energy source (ATP) and a reluctant which are both supplied by respiratory catabolism of carbohydrates produced by the host plant. Photosynthates are also required to generate the carbon skeletons for amino acid or urcide synthesis during the assimilation of ammonia produced by the bacteria within the nodule tissue. Competition for photosynthates occurs between the bacteroids, nodule tissue and the various vegetative and reproductive sinks in the host plant. The nature of carbon compounds involved in these processes, their routes of metabolism, the mechanisms of control and the partitioning of metabolises between the various sites of utilization are only poorly understood. It is apparent that dinitrogen is reduced to ammonia in the bacteroids. Both fast- and slow-growing strains of Rhizobium possess the Entner-Doudoroff pathway of glucose catabolism, and some, if not all, enzymes of the Emden-Meyerhof pathway. Some bacterial cultures also metabolize carbon through the ketogluconate pathway but only the fast-growing strains of cultured rhizobia possess the key enzyme of the pentose phosphate pathway (6-phosphogluconate dehydrogenase). The host cells are thought to contain the complete Emden-Meyerhof pathway and tricarboxylic acid cycle, which provides the carbon skeletons for assimilation of the ammonia, formed by the bacteroids, into α-amino acids. A pathway of anapleurotic carbon conservation, operative in the host cells, synthesizes oxaloacetic acid through β-carboxylation of phosphoenol pyruvate. This process could be important in the recapture and assimilation of respired CO2 in the rhizosphere. The main route of assimilation of ammonia produced by the bacteroids would appear to be via the glutamine synthetase-glutamate synthase pathway in the host cells. However, glutamate dehydrogenase may also be involved in ammonia assimilation. These enzymes also occur in in vitro cultures of Rhizobium and in bacteroids where they presumably participate in the synthesis of amino acids for growth of the bacteria or bacteroids. Nitrogen assimilated into glutamine or glutamate is exported from the nodules in a variety of forms, which include asparagine, glutamine, aspartate, homoserine and allantoates, in proportions which depend on the legume species. Studies on regulation of the overall process have focussed on expression of bacteroid genes and on the control of enzyme activity, at the level of nitrogenase and enzymes of nitrogen assimilation in particular. However, due to the wide range of experimental techniques, environmental conditions and plant species which have been used, no clear conclusions can yet be drawn. The pathways of carbon flow in nitrogen metabolism, particularly in relation to the synthesis of ureides and the regulation of carbon metabolism, remain key areas for future research in symbiotic nitrogen fixation.  相似文献   

20.
Summary Acetylene reduction and H2 evolution by legume root nodules from several plant species depended on incubation temperature; some nodules were active from 2 to 40°C. Acetylene reduction rates differed between plant species, with maximum activity at temperatures between 20 and 30°C forVicia faba, V. sativa, Trifolium pratense, T. subterraneum, Medicago truncatula and soybean, at 35°C forM. sativa and at 40°C for cowpea. OnlyM. sativa and cowpea reduced substantial amounts at 37.5°C. Temperatures from 2 to 10°C only slightly lessened activity ofT. subterraneum andV. sativa nodules. Nitrogenase functioned at temperatures which prevent establishment of other aspects of the symbiosis. The rate of acetylene reduction was constant for several hours at temperatures below 15°C, and activity continued for several days at 2°C for some species, but declined with time at warmer temperatures. Some nitrogenase was denatured at warmer temperatures, but the O2 tension in the assay vial also affected activity. In closed assay vessels nodule respiration decreased the pO2 and reduced nitrogenase activity. Activity was restored by adding O2 or regassing assay vials with air or Ar/O2. When the pO2 was maintained, acetylene reduction and H2 evolution by detached soybean nodules continued unchanged for 6 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号