首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various types of cyanobacterial mats were predominant in a wetland, constructed for the remediation of oil-polluted residual waters from an oil field in the desert of the south-eastern Arabian Peninsula, although such mats were rarely found in other wetland systems. There is scarce information on the bacterial diversity, spatial distribution and oil-biodegradation capabilities of freshwater wetland oil-polluted mats. Microbial community analysis by Automated Ribosomal Spacer Analysis (ARISA) showed that the different mats hosted distinct microbial communities. Average numbers of operational taxonomic units (OTUsARISA) were relatively lower in the mats with higher oil levels and the number of shared OTUsARISA between the mats was <60% in most cases. Multivariate analyses of fingerprinting profiles indicated that the bacterial communities in the wetland mats were influenced by oil and ammonia levels, but to a lesser extent by plant density. In addition to oil and ammonia, redundancy analysis (RDA) showed also a significant contribution of temperature, dissolved oxygen and sulfate concentration to the variations of the mats’ microbial communities. Pyrosequencing yielded 282,706 reads with >90% of the sequences affiliated to Proteobacteria (41% of total sequences), Cyanobacteria (31%), Bacteriodetes (11.5%), Planctomycetes (7%) and Chloroflexi (3%). Known autotrophic (e.g. Rivularia) and heterotrophic (e.g. Azospira) nitrogen-fixing bacteria as well as purple sulfur and non-sulfur bacteria were frequently encountered in all mats. On the other hand, sequences of known sulfate-reducing bacteria (SRBs) were rarely found, indicating that SRBs in the wetland mats probably belong to yet-undescribed novel species. The wetland mats were able to degrade 53–100% of C12–C30 alkanes after 6 weeks of incubation under aerobic conditions. We conclude that oil and ammonia concentrations are the major key players in determining the spatial distribution of the wetland mats’ microbial communities and that these mats contribute directly to the removal of hydrocarbons from oil field wastewaters.  相似文献   

2.
The hydrocarbon-degrading strain Dietzia sp. A14101 was isolated from an oil reservoir model column inoculated with oil-field bacteria. The column was continuously injected with nitrate (0.5 mM) from the start of water flooding, which lead to a gradual development of nitrate reduction in the column. Strain A14101 was able to utilize a range of aliphatic hydrocarbons as sole carbon and energy source during aerobic growth. Whole oil gas chromatography analysis of the crude oil phase from aerobic pure cultures showed that strain A14101 utilized the near complete range of aliphatic components and aromatic components toluene and xylene. Longer n-alkanes ≥C17 were utilized simultaneously with the shorter C10 and C15. After 120 days aerobic incubation, the whole oil gas chromatography profile of the crude oil phase was similar to that of heavily biodegraded oils. Anaerobic degradation of hydrocarbons with nitrate was not observed. Nitrate reduction was, however, observed during anaerobic growth on propionate, which suggests that strain A14101 grows on fatty acids in the column rather than on hydrocarbons.  相似文献   

3.
A quantitative solid-phase microextraction, gas chromatography, flame ionization detector (SPME-GC-FID) method for low-molecular-weight hydrocarbons from crude oil was developed and applied to live biodegradation samples. Repeated sampling was achieved through headspace extractions at 30°C for 45 min from flasks sealed with Teflon Mininert. Quantification without detailed knowledge of oil–water–air partition coefficients required the preparation of standard curves. An inverse relationship between retention time and mass accumulated on the SPME fibre was noted. Hydrocarbons from C5 to C16 were dated and those up to C11 were quantified. Total volatiles were quantified using six calibration curves. Biodegradation of volatile hydrocarbons during growth on crude oil was faster and more complete with a mixed culture than pure isolates derived therefrom. The mixed culture degraded 55% of the compounds by weight in 4 days versus 30–35% by pure cultures of Pseudomonas aeruginosa, Rhodococcus globerulus or a co-culture of the two. The initial degradation rate was threefold higher for the mixed culture, reaching 45% degradation after 48 h. For the mixed culture, the degradation rate of individual alkanes was proportional to the initial concentration, decreasing from hexane to undecane. P. fluorescens was unable to degrade any of the low-molecular-weight hydrocarbons and methylcyclohexane was recalcitrant in all cases. Overall, the method was found to be reliable and cost-effective. Journal of Industrial Microbiology & Biotechnology (2000) 25, 155–162. Received 04 March 2000/ Accepted in revised form 25 June 2000  相似文献   

4.
Slop oil, i.e. waste oil from a petrochemical complex, contains at least 240 hydrocarbon components, of which 54% are from C5 to C11 and the rest from C12 to C23. Of 22 isolated bacterial cultures that were able to degrade slop oil, seven could each degrade about 40% of the slop oil, and a mixture of all seven could degrade 50% in liquid medium. Bioaugmentation of soil contaminated with slop oil with the mixed bacterial culture gave up to 70% degradation of slop oil after 30 days. This compares with 40% degradation without bioaugmentation. Bioaugmentation led to a significant increase in counts of bacteria able to degrade slop oil. Wheat sown on bioaugmented soil germinated and grew better than on non-augmented soil and led to increased degradation of slop oil (up to 80%). This indicates the potential of mixed culture for bioremediation.  相似文献   

5.
Evidence is presented to support the hypothesis that serine, rather than 3-phosphoglycerate of the Calvin cycle, is a precursor of the tricarboxylic acid cycle during photosynthesis by the higher plant, Vicia faba. Identification of the serine intermediate is based upon a unique C1 > C2 > C3 isotope distribution for that metabolite following the fixation of 14CO2. This labeling pattern, while incompatible with an origin either in the Calvin cycle or the glycolate pathway, satisfies a critical criterion for the 3-carbon precursor of the anomalously labeled organic acids. The predominant carboxyl carbon atom labeling of serine reflects either a mixing of two pools of that metabolite, ie., C1 = C2 > C3 and C1 > C2 = C3, or a higher order of complexity in its synthesis. An anomalous C1 = C2 > C3 < C4 distribution for aspartate, however, suggests an origin by the carboxylation of a 3-carbon intermediate related to serine which has a C1 = C2 > C3 distribution. The latter distribution has been proposed for the serine intermediate of the postulated formate pathway. This pathway is described by the generalized metabolic sequence: CO2 → formate → serine → organic acids. Corresponding carbon atom distributions for citrate (C1 > C2), aspartate (C2 > C3), and serine (C2 > C3) belie a precursor-product relationship with alanine (C2 = C3), which is a molecular parameter of the Calvin cycle product, 3-phosphoglycerate.  相似文献   

6.
Pseudomonas aeruginosa strain WatG was unable to utilize either n-hexatriacontane (C36) or n-tetracontane (C40), which are both insoluble in a mineral salts medium (MSM), as a sole carbon source. However, when C36 and C40 were added to MSM containing crude oil, more than 25% of each of the compounds was degraded by this strain after 2 weeks at 30 °C. These results demonstrate that P. aeruginosa strain WatG has the ability to degrade long-chain alkanes up to C40, when they are solubilized by crude oil components.  相似文献   

7.
Degradation of crude oil by an arctic microbial consortium   总被引:2,自引:0,他引:2  
The ability of a psychrotolerant microbial consortium to degrade crude oil at low temperatures was investigated. The enriched arctic microbial community was also tested for its ability to utilize various hydrocarbons, such as long-chain alkanes (n-C24 to n-C34), pristane, (methyl-)naphthalenes, and xylenes, as sole carbon and energy sources. Except for o-xylene and methylnaphthalenes, all tested compounds were metabolized under conditions that are typical for contaminated marine liquid sites, namely at pH 6–9 and at 4–27°C. By applying molecular biological techniques (16S rDNA sequencing, DGGE) nine strains could be identified in the consortium. Five of these strains could be isolated in pure cultures. The involved strains were closely related to the following genera: Pseudoalteromonas (two species), Pseudomonas (two species), Shewanella (two species), Marinobacter (one species), Psychrobacter (one species), and Agreia (one species). Interestingly, the five isolated strains in different combinations were unable to degrade crude oil or its components significantly, indicating the importance of the four unculturable microorganisms in the degradation of single or of complex mixtures of hydrocarbons. The obtained mixed culture showed obvious advantages including stability of the consortium, wide range adaptability for crude oil degradation, and strong degradation ability of crude oil.  相似文献   

8.
Nakagawa T  Sato S  Fukui M 《Biodegradation》2008,19(6):909-913
Anaerobic degradation of p-xylene was studied with sulfate-reducing enrichment culture. The enrichment culture was established with sediment-free sulfate-reducing consortium on crude oil. The crude oil-degrading consortium prepared with marine sediment revealed that toluene, and xylenes among the fraction of alkylbenzene in the crude oil were consumed during the incubation. The PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene for the p-xylene degrading sulfate-reducing enrichment culture showed the presence of the single dominant DGGE band pXy-K-13 coupled with p-xylene consumption and sulfide production. Sequence analysis of the DGGE band revealed a close relationship between DGGE band pXy-K-13 and the previously described marine sulfate-reducing strain oXyS1 (similarity value, 99%), which grow anaerobically with o-xylene. These results suggest that microorganism corresponding to pXy-K-13 is an important sulfate-reducing bacterium to degrade p-xylene in the enrichment culture.  相似文献   

9.
Suberin from the roots of carrots (Daucus carota), parsnip (Pastinaca sativa), rutabaga (Brassica napobrassica), turnip (Brassica rapa), red beet (Beta vulgaris), and sweet potato (Ipomoea batatas) was isolated by a combination of chemical and enzymatic techniques. Finely powdered suberin was depolymerized with 14% BF3 in methanol, and soluble monomers (20-50% of suberin) were fractionated into phenolic (<10%) and aliphatic (13-35%) fractions. The aliphatic fractions consisted mainly of ω-hydroxyacids (29-43%), dicarboxylic acids (16-27%), fatty acids (4-18%), and fatty alcohols (3-6%). Each fraction was subjected to combined gas-liquid chromatography and mass spectrometry. Among the fatty acids very long chain acids (>C20) were the dominant components in all six plants. In the alcohol fraction C18, C20, C22, and C24 saturated primary alcohols were the major components. C16 and C18 dicarboxylic acids were the major dicarboxylic acids of the suberin of all six plants and in all cases octadec-9-ene-1, 18-dioic acid was the major component except in rutabaga where hexadecane-1, 16-dioic acid was the major dicarboxylic acid. The composition of the ω-hydroxyacid fraction was quite similar to that of the dicarboxylic acids; 18-hydroxy-octadec-9-enoic acid was the major component in all plants except rutabaga, where equal quantities of 16-hydroxyhexadecanoic acid and 18-hydroxyoctadec-9-enoic acid (42% each) were found. Compounds which would be derived from 18-hydroxyoctadec-9-enoic acid and octadec-9-ene-1, 18-dioic acid by epoxidation, and epoxidation followed by hydration of the epoxide, were also detected in most of the suberin samples. The monomer composition of the six plants showed general similarities but quite clear taxonomic differences.  相似文献   

10.
In addition to its usual native crystalline form (cellulose I), cellulose can exist in a variety of alternative crystalline forms (allomorphs) which differ in their unit cell dimensions, chain packing schemes, and hydrogen bonding relationships. We prepared, by various chemical treatments, four different alternative allomorphs, along with an amorphous (noncrystalline) cellulose which retained its original molecular weight. We then examined the kinetics of degradation of these materials by two species of ruminal bacteria and by inocula from two bovine rumens. Ruminococcus flavefaciens FD-1 and Fibrobacter succinogenes S85 were similar to one another in their relative rates of digestion of the different celluloses, which proceeded in the following order: amorphous > IIII > IVI > IIIII > I > II. Unlike F. succinogenes, R. flavefaciens did not degrade cellulose II, even after an incubation of 3 weeks. Comparisons of the structural features of these allomorphs with their digestion kinetics suggest that degradation is enhanced by skewing of adjacent sheets in the microfibril, but is inhibited by intersheet hydrogen bonding and by antiparallelism in adjacent sheets. Mixed microflora from the bovine rumens showed in vitro digestion rates quite different from one another and from those of both of the two pure bacterial cultures, suggesting that R. flavefaciens and F. succinogenes (purportedly among the most active of the cellulolytic bacteria in the rumen) either behave differently in the ruminal ecosystem from the way they do in pure culture or did not play a major role in cellulose digestion in these ruminal samples.  相似文献   

11.
The coffee oil has a promising potential to be used in food industry, but an efficient use, especially in products that required high-temperature heating, depends on its chemical composition and the changes induced by processing. Since there is little information on this topic, the aim of our study was to investigate the crude green and roasted coffee oil (GCO, RCO) and heated (HGCO, HRCO) for 1 h at 200°C, by Fourier Transform Infrared (FTIR) spectroscopy and in terms of antioxidant and antimicrobial properties. The results of FTIR spectroscopy revealed that no statistically significant differences (one-way ANOVA, p>0.05) in the oxidative status of GCO and RCO were found. The coffee oils heating induced significant spectral changes in the regions 3100–3600 cm–1, 2800–3050 cm–1 and 1680–1780 cm–1 proved by the differences in the absorbance ratios A 3009 cm−1/A 2922 cm−1, A 3009 cm−1/A 2853 cm−1, A 3009 cm−1/A 1744 cm−1, A 1744 cm−1/A 2922 cm−1. These alterations were related to the reduction of the unsaturation degree due to primary and secondary oxidation processes of the lipid fraction. The radical scavenging ability of oils investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealed that the IC50 value of GCO was significantly lower than of RCO (p<0.05). The IC50 values of crude coffee oils were lower than those of heated samples. The antioxidant activity of oils was attributed to both antioxidant compounds with free-radical scavenging capacity and to lipids oxidation products generated by heating. In the first 6 h of incubation, the inhibitory activity of crude oils against E. coli and E. faecalis was not significantly different to the control (p>0.05). Also, HGCO and HRCO showed significantly different inhibitory potential related to the control (p<0.05). The heating induced statistically significant decreases in the effectiveness of coffee oils against the tested bacteria. GCO proved to be the most effective among investigated coffee oils against the tested bacteria.  相似文献   

12.
Hydrocarbon-degrading bacteria isolated from oil-polluted soils, were used to design three defined mixed cultures (DMC) for biodegradation of Maya crude oil fractions. The first degrading culture, DMC A was made up with 10 strains. Design of DMC B (six strains) and DMC C (three strains) was based on DGGE profiles obtained throughout biodegradation assays of different petroleum fractions. Biodegradation of the aliphatic fraction (10 000 mg l−1) and an aromatic–polar mixture (5000 mg l−1) was evaluated for the DMC B. Biodegradation of total hydrocarbons (10 000 mg l−1) and its fractions was evaluated for DMC B and DMC C. During biodegradation assays, O2 consumption and CO2 production were assessed by respirometry, while population dynamics of predominant strains was based on PCR-DGGE profiles of partial 16S rDNA. Aliphatic fraction was completely biodegraded by DMC B, while degradation of the aromatic–polar mixture was 12.5% and for total hydrocarbons 40.5%. DMC B was able to degrade the aromatic fraction (31%) and even the polar fraction (19.6%) present in total hydrocarbons. DMC C degraded the aromatic and polar fractions (5.6% and 2%, respectively) present in total hydrocarbons. DGGE profiles of the DMCs indicated that Pseudomonas sp., Gordonia rubripertincta and a non-identified strain were predominant and probably responsible of the hydrocarbons biodegradation. The use of DGGE-fingerprinting to track microbial populations, allowed selecting strains to design efficient oil-degrading defined mixed cultures.  相似文献   

13.
The accumulation of exogenous hydrocarbons by the marine diatomCyclotella cryptica grown in culture has been studied using gas chromatography. Exposure of the alga to paraffins for 10 days results in accumulation of n-alkanes having between C13 and C16 carbon atoms. The C16 level in the accumulated fraction is twice as high as that in the original oil.  相似文献   

14.
A novel xanthan depolymerase (endo-β-1,4-glucanase) was isolated from a salt-tolerant bacteria culture (HD1) grown on xanthan. The depolymerase was purified 55-fold through chromatography on ion-exchange and molecular sieve columns, including high-performance liquid chromatography. The purified enzyme fraction was homogeneous as judged by polyacrylamide gel electrophoresis. The molecular weight of this enzyme is 60,000. Optimum pH and temperature for xanthan depolymerase activity were around 5 and 30 to 35°C, respectively. The enzyme was not stable at a temperature higher than 45°C. The activation energy calculated from an Arrhenius plot was 6.40 kcal (26.78 kJ). The enzyme molecule contains no sugar moiety. The amino acid composition of the enzyme protein was determined. Xanthan depolymerase cleaves the endo-β-1,4-glucosidic linkage of the xanthan molecule, freeing reducing groups of some sugars and decreasing viscosity of the polymer solution. Only the backbones of β-1,4-linked glucans with side chains or other substituents were cleaved. No monosaccharide was produced by the action of this enzyme. The oligosac-charide(s) in the low-molecular weight fraction consisted of 15 to 58 monosaccharide units. The enzymic reaction resulted in the decrease in weight-average molecular weight of xanthan from 6.5 × 106 to 8.0 × 105 in 0.5 h. This enzyme alone could not degrade xanthan to a single or multiple pentasaccharide unit(s). Results suggest that there may be regions inside the xanthan molecule that are susceptible to the attack of this enzyme. Xanthan depolymerase activity was not inhibited by many chemicals, including thiols, antioxidants, chlorinated hydrocarbons, metal-chelating agents, and inorganic compounds, except ferric chloride and arsenomolybdate. Many biocides were tested and found not to be inhibitory. Conditions used in enhanced oil recovery operations, i.e., the presence of formaldehyde, Na2S2O4, 2,2-dibromo-3-nitrilopropionamide, and an anaerobic environment, did not inhibit xanthan depolymerase activity.  相似文献   

15.
Sequential Growth of Bacteria on Crude Oil   总被引:10,自引:5,他引:5       下载免费PDF全文
By modification of the enrichment culture procedure three bacterial strains capable of degrading crude oil in sea water were isolated in pure culture, UP-2, UP-3, and UP-4. Strain UP-2 appears to be highly specialized for growth on crude oil in sea water since it showed strong preference for oil or oil degradation products as substrates for growth, converted 66% of the oil into a form no longer extractable by organic solvents, quantitatively degraded the paraffinic fraction (gas chromatographic analysis), emulsified the oil during exponential growth, and produced 1.6 × 108 cells per mg of oil. After exhaustive growth of UP-2 on crude oil the residual oil supported the growth of UP-3 and UP-4, but not a previously isolated oil-degrading bacterium, RAG-1. Strains UP-2, UP-3, and UP-4 grew on RAG-1-degraded oil (specifically depleted of n-alkanes). The growth of UP-3 and UP-4 on UP-2 and RAG-1-degraded oil resulted in the production of new paraffinic compounds as revealed by gas chromatography. When the four strains were grown either together in a mixed culture or sequentially, there was over 75% oil conversion. By plating on selective media, growth of the individual strains was measured kinetically in the reconstituted mixed culture, revealing competition for common growth substances (UP-2 and RAG-1), enhanced die-off (UP-2), and stabilization (UP-4) during the stationary phase.  相似文献   

16.
Quantitative extraction and subsequent purification of small biological samples often involve cumbersome procedures. We have devised a short and efficient method for the quantitative extraction of the corticosteroid and the 20α reduced steroid series from culture medium containing 20% sera in a single, pure fraction with separation from cholesterol. Passage through a C18-bonded reversed-phase Sep-Pak® cartridge of the acidified culture medium and subsequent extraction of the steroid fraction with methanol yields a single fraction containing all steroids in 90% recovery and reduced quantities of cholesterol down to 30%. The extract can then be used without further purification for quantitative analysis by high-performance liquid chromatography or derivatized and analyzed by gas chromatography and gas chromatography—mass spectrometry.  相似文献   

17.
Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD+ ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (Δpfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h−1 (1.6 g liter−1 h−1). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste.  相似文献   

18.
In order to explain the difference in extracellular cellulase activities (C1 and Cx enzyme activities) among various strains of P. oryzae, the elution patterns from the column were compared among various strains, following each step of the partial purification.

The crude enzymes, prepared by ammonium sulfate fractionation (0.2~0.8 sat.) from the culture filtrates, which were obtained from various strains of P. oryzae cultured on rice plant powder as the carbon source, were fractionated by DEAE-Sephadex A–50 chromatography into two components; the passing-through fraction (I) and the fraction (II) adsorbed and eluted from the column with 0.5 M NaCl The percentage of the enzyme activity (Cx enzyme activity) in fraction I to that of the crude extract was found to vary chracteristically according to the strain, and the variation was in a good correlation to that of the extracellular cellulase activities.

Fractions I and II were then separated by Sephadex G–100 into two (peaks a and b) and at least five (peaks c, d, e, f and g) components, respectively. The activities in peaks a, b and g were found to vary according to the strain, while those of peaks c and e were common among various strains.

The cell wall fraction prepared from C–3 strain, which was previously shown to be low in enzyme activity and thus out of the correlation between the degree of pathogenicity and extracellular cellulase activity, was found to exhibit higher cellulase activities (C1 and Cx enzyme activities) than those of other strains examined. Thus, the low extracellular cellulase activity in the case of C–3 strain was suggested to be due to the abnormality in the mechanism of enzyme excretion.  相似文献   

19.
An oil-degrading bacterium identified as Acinetobacter lwoffi was isolated by elective culture on North Sea Forties crude oil from an activated sludge sample. It grew on a wide range of n-alkanes (C12–C28) and 1-phenylalkanes, including 1-phenyldodecane, 1-phenyltridecane and 1-phenyltetradecane. The organism degraded 1-phenyldodecane to phenylacetic acid which was further metabolized via homogentisic acid, whilst 1-phenyltridecane was transformed to trans-cinnamic and 3-phenylpropionic acid which were not further metabolized. Evidence dence is presented for a relationship between aromatic amino acid catabolism and 1-phenyldodecane degradation in this organism.  相似文献   

20.
The fungi Aspergillus fumigatus, Hormoconis resinae and Candida silvicola were isolated from the fuel/water interfacial biomass in diesel storage tanks in Brazil. Their corrosive activities on mild steel ASTM A 283-93-C, used in storage tanks for urban diesel, were evaluated after various times of incubation at 30 °C in a modified Bushnell–Haas mineral medium (without chlorides) with diesel oil as sole source of carbon. Their ability to degrade diesel oil was evaluated after growth for 30 and 60 days. The fungus Aspergillus fumigatus and the consortium of all three organisms showed the highest production of biomass; A. fumigatus gave the greatest value for steel weight loss and produced the greatest reduction in pH of the aqueous phase. Solid phase microextraction (SPME) showed that the main acid present in the aqueous phase after 60 days incubation with A. fumigatus was propionic acid. Polarization curves indicated that microbial activity influenced the anodic process, probably by the production of corrosive metabolites, and that this was particularly important in the case of A. fumigatus. This fungus preferentially degraded aliphatic hydrocarbons of chain lengths C11--C13 in the diesel, producing 47.7, 37.5 and 51% reductions in C11, C12 and C13, respectively. It produced more degradation than the consortium after 60 days incubation. It is likely that the presence of other species in the consortium inhibited the growth of A. fumigatus, thus resulting in a lower rate of diesel fuel degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号