首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Interleukin-2 (IL-2) is the major growth factor of activated T lymphocytes. By inducing cell cycle progression and protection from apoptosis in these cells, IL-2 is involved in the successful execution of an immune response. Upon binding its receptor, IL-2 activates a variety of signal transduction pathways, including the Ras/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and Janus kinase (JAK)/STAT cascades. In addition, activation of phosphatidylinositol 3-kinase (PI3K) and several of its downstream targets has also been shown. However, the coupling of STAT3 serine phosphorylation to PI3K in response to IL-2 has yet to be shown in either T cell lines or primary human T cells. This report shows that the PI3K inhibitors LY294002 and wortmannin block activation of MEK and ERK by IL-2 in primary human T cells. Moreover, these inhibitors significantly reduce IL-2-triggered STAT3 serine phosphorylation without affecting STAT5 serine phosphorylation. Analysis of the effects of these inhibitors on cell cycle progression and apoptosis strongly suggests that PI3K-mediated events, which includes STAT3 activation, are involved in IL-2-mediated cell proliferation but not cell survival. Finally, results presented illustrate that in primary human T cells, activation of Akt is insufficient for IL-2-induced anti-apoptosis. Thus, these results demonstrate that IL-2 stimulates PI3K-dependent events that correlate with cell cycle progression, but not anti-apoptosis, in activated primary human T cells.  相似文献   

4.
5.
Activating mutations in the RasGTPases are the most common oncogenic lesions in human cancer. Similarly, elevated STAT3 expression and/or phosphorylation are observed in the majority of human cancers. We recently found that activated Ras requires a mitochondrial rather than a nuclear activity of STAT3 to support cellular transformation. This mitochondrial activity of STAT3 was supported by phosphorylation on serine 727 (S727) in the carboxyl-terminus of STAT3. In this study we show that the H-Ras oncoprotein engages the MEK-ERK pathway to drive phosphorylation of STAT3 on S727, while phosphoinositide 3-kinase (PI3K) and mTOR activity were superfluous. Moreover, pharmacological inhibition of MEK reduced transformation by H-, K- or N-Ras. However, cells expressing a mitochondrially restricted STAT3 with a phospho-mimetic mutation at S727 were partially resistant to inhibition of the ERK pathway, exhibiting a partial rescue of anchorage-independent cell growth in the presence of MEK inhibitor. This study shows that the MEK-ERK pathway is required for activated Ras-induced phosphorylation of STAT3 on S727, that inhibition of STAT3 S727 phosphorylation contributes to the anti-oncogenic potential of MEK inhibitors, and that mitochondrial STAT3 is one of the critical substrates of the Ras-MEK-ERK- axis during cellular transformation.  相似文献   

6.
7.
The effect of differential signalling by IL-6 and leukaemia inhibitory factor (LIF) which signal by gp130 homodimerisation or LIFRβ/gp130 heterodimerisation on survival and hypertrophy was studied in neonatal rat cardiomyocytes. Both LIF and IL-6 [in the absence of soluble IL-6 receptor (sIL-6Rα)] activated Erk1/2, JNK1/2, p38-MAPK and PI3K signalling peaking at 20 min and induced cytoprotection against simulated ischemia-reperfusion injury which was blocked by the MEK1/2 inhibitor PD98059 but not the p38-MAPK inhibitor SB203580. In the absence of sIL-6R, IL-6 did not induce STAT1/3 phosphorylation, whereas IL-6/sIL-6R and LIF induced STAT1 and STAT3 phosphorylation. Furthermore, IL-6/sIL-6R induced phosphorylation of STAT1 Tyr701 and STAT3 Tyr705 were enhanced by SB203580. IL-6 and pheneylephrine (PE), but not LIF, induced cardiomyocyte iNOS expression and nitric oxide (NO) production. IL-6, LIF and PE induced cardiomyocyte hypertrophy, but with phenotypic differences in ANF and SERCA2 expression and myofilament organisation with IL-6 more resembling PE than LIF. Transfection of cardiomyocytes with full length or truncated chimaeric gp130 cytoplasmic domain/Erythropoietin receptor (EpoR) extracellular domain fusion constructs showed that the membrane proximal Box 1 and Box 2 containing region of gp130 was necessary and sufficient for MAPK and PI3K activation; hypertrophy; SERCA2 expression and iNOS/NO induction in the absence of JAK/STAT activation. In conclusion, IL-6 can signal in cardiomyocytes independent of sIL-6R and STAT1/3 and furthermore, that Erk1/2 and PI3K activation by IL-6 are both necessary and sufficient for induced cardioprotection. In addition, p38-MAPK may act as a negative feedback regulator of JAK/STAT activation in cardiomyocytes.  相似文献   

8.
9.
10.
The biological activities of type I interferons (IFNs) are mediated by their binding to a heterodimer receptor complex (IFNAR1 and IFNAR2), resulting in the activation of the JAK (JAK1 and TYK2)-STAT (1, 2, 3, 5 isotypes) signalling pathway. Although several studies have indicated that IFN-alpha and IFN-beta can activate complexes containing STAT6, the biological role of this activation is still unknown. We found that exposure of hepatoma cells (HuH7 and Hep3B) to IFN-alpha or IFN-beta led to the activation of STAT6. Activated STAT6 in turn induced the formation of STAT2: STAT6 complexes, which led to the secretion of IL-1Ra. The activation of STAT6 by type I IFN in hepatocytes was mediated by JAK1 and Tyk2. In addition, IFN-alpha or IFN-beta significantly enhanced the stimulatory effect of IL-1beta on production of IL-1Ra. The present study suggests a novel function of IFN-alpha and IFN-beta signalling in human hepatocytes. Our results provide evidence for the mechanism how IFN-alpha and IFN-beta modulate inflammatory responses through activation of STAT6 and production of secreted IL-1Ra.  相似文献   

11.
12.
13.
Monocyte chemotactic protein-1 (MCP-1) recruits activated phagocytes to the site of tissue injury. Interferon-gamma (IFN-gamma) present in the microenvironment of glomerulus acts on mesangial cells to induce local production of MCP-1. The mechanism by which IFN-gamma stimulates expression of MCP-1 is not clear. We therefore examined the role of PI 3 kinase signaling in regulating the IFN-gamma-induced MCP-1 expression in mesangial cells. Blocking PI 3 kinase activity with Ly294002 attenuated IFN-gamma-induced MCP-1 protein and mRNA expression. IFN-gamma increased Akt kinase activity in a PI 3 kinase-dependent manner. Expression of dominant negative Akt kinase inhibited serine phosphorylation of STAT1alpha, without any effect on its tyrosine phosphorylation, and decreased IFN-gamma-induced expression of MCP-1. These data for the first time indicate a role for PI 3 kinase-dependent Akt kinase in MCP-1 expression. We have recently shown that along with Akt, PKCepsilon is a downstream target of PI 3 kinase in IFN-gamma signaling. Similar to dominant negative Akt kinase, dominant negative PKCepsilon also inhibited serine phosphorylation of STAT1alpha without any effect on tyrosine phosphorylation. Dominant negative PKCepsilon also abrogated MAPK activity, resulting in decrease in IFN-gamma-induced MCP-1 expression. Furthermore, Akt and PKCepsilon are present together in a signaling complex. IFN-gamma had no effect on this complex formation, but did increase PKCepsilon-associated Akt kinase activity. PKCepsilon did not regulate IFN-gamma-induced Akt kinase. Finally, expression of dominant negative Akt kinase blocked IFN-gamma-stimulated MAPK activation. These data provide the first evidence that PI 3 kinase-dependent Akt and PKCepsilon activation independently regulate MAPK activity and serine phosphorylation of STAT1alpha to increase expression of MCP-1.  相似文献   

14.
15.
Insulin stimulates phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases (ERK) in various mammalian cells. To study the role of PI3K in insulin stimulation of ERK, we employed PI3K inhibitor LY294002 and mouse embryonic R- fibroblasts lacking IGF-1 receptors. In these R- cells, PI3K inhibition by LY294002 enhanced insulin stimulation of ERK phosphorylation whereas LY294002 inhibited insulin stimulation of Akt phosphorylation. The enhanced insulin stimulation of ERK phosphorylation was accompanied by increased IRS-1 tyrosine phosphorylation. Insulin stimulation of insulin receptor tyrosine phosphorylation was not altered. PI3K inhibition increased IRS-1-Grb2 complex formation and ras activity following insulin treatment of cells. Increased insulin stimulation of ERK by PI3K inhibition was mediated by the MEK/ERK pathway, but did not involve inhibitory Ser259 phosphorylation of raf that was reported to be mediated by Akt. In summary, PI3K inhibition in R- cells enhanced insulin stimulation of ERK phosphorylation by mechanisms involving enhancement of IRS-1 tyrosine phosphorylation, IRS-1-Grb2 complex formation and the ras/MEK/ERK pathway.  相似文献   

16.
17.
18.
19.
Bacterial flagellin triggers inflammatory responses. Phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) regulate the production of pro- and anti-inflammatory cytokines that are induced by extrinsic antigens, but the function of mTORC1 in flagellin-induced inflammatory response is unknown. The purpose of this study was to examine the role and the mechanism of PI3K/Akt/mTOR pathway in flagellin-induced cytokine expression in mouse macrophages. We observed that flagellin upregulated TNF-α time- and dose-dependently. Flagellin stimulated rapid (<15 min) PI3K/Akt/mTOR phosphorylation that was mediated by TLR5. Inhibition of PI3K with LY294002 and wortmannin, and of mTORC1 with rapamycin decreased flagellin-induced TNF-α and IL-6 expression and cell proliferation. The activation of NF-κB p65 and STAT3 was regulated by mTORC1 via degradation of IκBα and phosphorylation of STAT3 in response to flagellin, respectively. Thus, the PI3K/Akt/mTORC1 pathway regulates the innate immune response to bacterial flagellin. Rapamycin is potential therapy that can regulate host defense against pathogenic infections.  相似文献   

20.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. IL‐6 is a multifunctional cytokine that plays a central role in both innate and acquired immune responses. We investigated the signaling pathway involved in IL‐6 production stimulated by TNF‐α in cultured myoblasts. TNF‐α caused concentration‐dependent increases in IL‐6 production. TNF‐α‐mediated IL‐6 production was attenuated by focal adhesion kinase (FAK) mutant and siRNA. Pretreatment with phosphatidylinositol 3‐kinase inhibitor (PI3K; Ly294002 and wortmannin), Akt inhibitor, NF‐κB inhibitor (pyrrolidine dithiocarbamate, PDTC), and IκB protease inhibitor (L ‐1‐tosylamido‐2‐phenyl phenylethyl chloromethyl ketone, TPCK) also inhibited the potentiating action of TNF‐α. TNF‐α increased the FAK, PI3K, and Akt phosphorylation. Stimulation of myoblasts with TNF‐α activated IκB kinase α/β (IKKα/β), IκBα phosphorylation, p65 phosphorylation, and κB‐luciferase activity. TNF‐α mediated an increase of κB‐luciferase activity which was inhibited by Ly294002, wortmannin, Akt inhibitor, PDTC and TPCK or FAK, PI3K, and Akt mutant. Our results suggest that TNF‐α increased IL‐6 production in myoblasts via the FAK/PI3K/Akt and NF‐κB signaling pathway. J. Cell. Physiol. 223: 389–396, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号