首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nestedness analysis has become increasingly popular in the study of biogeographic patterns of species occurrence. Nested patterns are those in which the species composition of small assemblages is a nested subset of larger assemblages. For species interaction networks such as plant–pollinator webs, nestedness analysis has also proven a valuable tool for revealing ecological and evolutionary constraints. Despite this popularity, there has been substantial controversy in the literature over the best methods to define and quantify nestedness, and how to test for patterns of nestedness against an appropriate statistical null hypothesis. Here we review this rapidly developing literature and provide suggestions and guidelines for proper analyses. We focus on the logic and the performance of different metrics and the proper choice of null models for statistical inference. We observe that traditional 'gap-counting' metrics are biased towards species loss among columns (occupied sites) and that many metrics are not invariant to basic matrix properties. The study of nestedness should be combined with an appropriate gradient analysis to infer possible causes of the observed presence–absence sequence. In our view, statistical inference should be based on a null model in which row and columns sums are fixed. Under this model, only a relatively small number of published empirical matrices are significantly nested. We call for a critical reassessment of previous studies that have used biased metrics and unconstrained null models for statistical inference.  相似文献   

2.
Understanding what mechanisms shape the diversity and composition of biological assemblages across broad‐scale gradients is central to ecology. Litter‐consuming detritivorous invertebrates in streams show an unusual diversity gradient, with α‐diversity increasing towards high latitudes but no trend in γ‐diversity. We hypothesized this pattern to be related to shifts in nestedness and several ecological processes shaping their assemblages (dispersal, environmental filtering and competition). We tested this hypothesis, using a global dataset, by examining latitudinal trends in nestedness and several indicators of the above processes along the latitudinal gradient. Our results suggest that strong environmental filtering and low dispersal in the tropics lead to often species‐poor local detritivore assemblages, nested in richer regional assemblages. At higher latitudes, dispersal becomes stronger, disrupting the nested assemblage structure and resulting in local assemblages that are generally more species‐rich and non‐nested subsets of the regional species pools. Our results provide evidence that mechanisms underlying assemblage composition and diversity of stream litter‐consuming detritivores shift across latitudes, and provide an explanation for their unusual pattern of increasing α‐diversity with latitude. When we repeated these analyses for whole invertebrate assemblages of leaf litter and for abundant taxa showing reverse or no diversity gradients we found no latitudinal patterns, suggesting that function‐based rather than taxon‐based analyses of assemblages may help elucidate the mechanisms behind diversity gradients.  相似文献   

3.
Aim Nestedness occurs when species present in depauperate sites are subsets of those found in species‐rich sites. The degree of congruence of site nestedness among different assemblages can inform commonalities of mechanisms structuring the assemblages. Well‐nested assemblages may still contain idiosyncratic species and sites that notably depart from the typical assemblage pattern. Idiosyncrasy can arise from multiple processes, including interspecific interactions and habitat preferences, which entail different consequences for species co‐occurrences. We investigate the influence of fine‐scale habitat variation on nestedness and idiosyncrasy patterns of beetle and bird assemblages. We examine community‐level and pairwise species co‐occurrence patterns, and highlight the potential influence of interspecific interactions for assemblage structure. Location Côte‐Nord region of Québec, Canada. Methods We sampled occurrences of ground‐dwelling beetles, flying beetles and birds at sites within old‐growth boreal forest. We examined the nestedness and idiosyncrasy of sites and sought relationships to habitat attributes. We analysed non‐random species co‐occurrence patterns at pairwise and community levels, using null model analysis and five ‘association’ indices. Results All three assemblages were significantly nested. There was limited congruence only between birds and flying beetles whose nestedness was related to canopy openness. For ground‐dwelling beetles, nestedness was related to high stand heterogeneity and sapling density, whereas site idiosyncrasy was inversely related to structural heterogeneity. For birds, site idiosyncrasy increased with canopy cover, and most idiosyncratic species were closed‐canopy specialists. In all assemblages, species idiosyncrasy was positively correlated with the frequency of negative pairwise associations. Species co‐occurrence patterns were non‐random, and for flying beetles and birds positive species pairwise associations dominated. Community‐level co‐occurrence summaries may not, however, always reflect these patterns. Main conclusions Nestedness patterns of different assemblages may not correlate, even when sampled at common locations, because of different responses to local habitat attributes. We found idiosyncrasy patterns indicating opposing habitat preferences, consistent with antagonistic interactions among species within assemblages. Analysis of such patterns can thus suggest the mechanisms generating assemblage structures, with implications for biodiversity conservation.  相似文献   

4.
I tested the effects of pool size and spatial position (upstream or downstream) on fish assemblage attributes in isolated and connected pools in an upland Oklahoma stream, United States. I hypothesized that there would be fundamental differences between assemblages in these two pool types due to the presence or absence of colonization opportunities. Analyses were carried out at three ecological scales: (1) the species richness of pool assemblages, (2) the species composition of pool assemblages, and (3) the responses of individual species. There were significant species-volume relationships for isolated and connected pools. However, the relationship was weaker and there were fewer species, on average, in isolated pools. For both pool types, species incidences were significantly nested such that species-poor pools tended to be subsets of species-rich pools, a common pattern that ultimately results from species-specific differences in colonization ability and/or extinction susceptibility. To examine the potential importance of these two processes in nestedness patterns in both pool types, I made the following two assumptions: (1) probability of extinction should decline with increasing pool size, and (2) probability of immigration should decline in an upstream direction (increasing isolation). When ordered by pool volume, only isolated pools were significantly nested suggesting that these assemblages were extinction-driven. When ordered by spatial position, only connected pools were significantly nested (more species downstream) suggesting that differences in species-specific dispersal abilities were important in structuring these assemblages. At the individual-species level, volume was a significant predictor of occurrence for three species in isolated pools. In connected pools, two species showed significant position effects, one species showed a pool volume effect, and one species showed pool volume and position effects. These results demonstrate that pool size and position within a watershed are important determinants of fish species assemblage structure, but their importance varies with the colonization potential of the pools. Isolated pool assemblages are similar to the presumed relaxed faunas of montane forest fragments and land bridge islands, but at much smaller space and time scales. Received: 6 December 1996 / Accepted: 10 December 1996  相似文献   

5.
《Ecological Informatics》2008,3(4-5):286-294
Simulated ecological datasets have been widely used to assess the ability of ordination techniques to portray patterns in ecological assemblage data. Such datasets typically contain a single assemblage sampled over an environmental gradient or set of gradients. Little has been done on the generation of artificial datasets that contain a number of different species assemblages, to aid in the evaluation of multivariate techniques that test for differences between assemblages of species. This paper describes and compares two simulation methods that generate ecologically realistic artificial multi-assemblage datasets. Both methods provide multivariate data (e.g. species abundances) for replicate sites within discretely different assemblages. The first technique is a coenocline model based on species' responses to variation modeled by a five-parameter β-function, where variation in species abundances both within and between assemblages is governed by differences in the positions of sites and assemblages along environmental gradients. The second technique, the resampling method, involves bootstrap resampling of real assemblage datasets, with the addition of selected types of controlled differences between assemblages. Here we use it to generate turnover in species composition. We calibrate both simulation methods based on a field assemblage of bird species. The two different simulation methods portray different levels and types of between-assemblage variation. The resampling method allows greater control over some aspects of assemblage difference (e.g. independently varying differences in species richness and compositional turnover) than the coenocline method. Both can generate usable replicated simulated datasets for assessing the ability of multivariate tests to detect ecological variation among assemblages.  相似文献   

6.
Scaling biodiversity patterns has been recognized lately as a very important issue in the search of global processes; however coexistence and assemblage patterns are typically approached at a single spatial scale. Here, we examined coexistence and co-occurrence patterns of desert small mammal communities across different spatial scales in the search of general community patterns. We sampled small mammals in Monte desert (Argentina, South America) for small spatial scales and reviewed published papers from other worldwide deserts for large spatial scale analyses. We used classic community estimators (Shannon, Richness), rank abundance curves and fitting distributions to analyze species coexistence and co-occurrence patterns. Assemblage patterns were analyzed evaluating nestedness across spatial scales and among deserts. Worldwide desert small mammal assemblages are characterized mainly by low species richness and high variation in species composition. The central Monte desert of Argentina showed a consistent assemblage pattern across spatial scales, with a generalist species being the most abundant and widely distributed, accompanied by other subordinate and more narrowly distributed species. All Monte desert communities were significantly nested, with nestedness increasing with scale from patch to regional. Assemblage and coexistence patterns were similar when comparing worldwide deserts despite differences in total richness and faunal singularity. The degree of nestedness varied among worldwide deserts; however all of them showed a consistent nested pattern. Differences in the degree of nestedness could be a result of different regulating factors depending on the desert and scale. These results highlight the importance of including multiscale approaches when dealing with processes that structure desert communities.  相似文献   

7.
Predators control post-fledging mortality in tawny owls, Strix aluco   总被引:1,自引:0,他引:1  
Peter Sunde 《Oikos》2005,110(3):461-472
Patterns of variation in plant–pollinator (p–p) systems in response to environmental variables have been the focus of much recent attention. We analyzed species diversity and generalization of interactions of flower visitors belonging to eight p–p networks along a steep rainfall gradient in NW Patagonia, Argentina. To our knowledge, this is the first published study that applies a humidity-gradient approach to p–p networks analysis. Throughout the gradient, we recorded 1232 interactions between 413 different animal species and 111 plant species. We found that (a) specialization measures showed no clear pattern of variation throughout the rainfall gradient, (b) the diversity of flower-visiting insects does not consistently respond to rainfall gradients along the gradient, and (c) as we predicted, flies dominated the wetter end of the gradient, while at the drier end bees prevailed. The lack of differences in diversity could be explained by the repeated cycles of species extinctions undergone in the past by the southern temperate forests, which dominate the wetter end of the gradient. A logistic model that related the flies' dominance of the visitor assemblage with latitude was good predictor of the average fly composition of the entire region, although we found major between-site variations in response to local environmental conditions. The replacement of flies by bees towards the drier end of the gradient seemed to repeat a worldwide pattern where flies dominate humid regions while bees attain their greatest abundance in xeric regions. Regional patterns in the structure of our p–p systems (composition of the visitor fauna) were better explained by altitudinal differences, while function (percentage of interactions established by each taxon) seemed to be more influenced by precipitation.  相似文献   

8.
Recently, plant–pollinator networks have been found to be highly structured in a nested pattern in which specialists interact with generalist species. This structure is often assumed to be particular to mutualistic interactions in opposition to the compartmentalized pattern expected for antagonistic networks. We investigated the presence of asymmetric specialization in a data set assembled from the literature of 20 highly resolved plant–insect herbivore networks and compared them with 24 plant–pollinator networks. Our results indicate that these two types of networks differ, but not in the way it is generally assumed. Asymmetric specialization is present in plant–herbivore networks even if it appears less frequently than in plant–pollinator networks. Indeed, mean and median percentages of species showing asymmetric specialisation in herbivory webs are 33% and 14% respectively, compared to 57% and 60% in pollination webs. Furthermore, the amount of asymmetry is linked with species diversity and not to connectance in plant-pollinator networks whereas the opposite pattern is found in plant–herbivore networks. Our results offer promising perspectives for understanding both the mechanisms that structure ecological communities and their impact on community dynamics depending on the type of interaction.  相似文献   

9.
Local niche‐based processes and dispersal are important determinants of assemblage composition and species diversity. However, there is no consensus about the relative importance of niche and spatial processes to explain the distribution of anuran species in tropical systems. In our study, we analyzed the niche and neutral effects on anuran assemblages and found that biotic interactions were a predictor of assemblage structure. The Eltonian concept of niche was the best predictor for the structure of aquatic‐breeding anuran assemblages, as species tended to co‐occur more often than would be expected by chance. We suggest that the lack of environmental effect could be explained by differences in the pattern of movement between arboreal and non‐arboreal anurans. Once there is a reduction in the number of arboreal anurans in open areas, the importance of habitat heterogeneity to explain assemblage composition should decrease. The lack of correlation between the spatial component in our model and species composition is evidence that spatial processes, such as migration, did not play a major role in structuring local assemblages. Anurans are generally assumed as having poor dispersal ability, yet this assumption is not true for all anuran species. We suggest that future studies should include key behavioral traits, such as site fidelity and homing behavior, as these traits can represent the dispersal abilities of anurans and dispersal ability seems to be important when we try to predict patterns of anuran distribution.  相似文献   

10.
Nested species subsets are a common pattern in many types of communities found in insular or fragmented habitats. Nestedness occurs in some communities of ectoparasites of fish, as does the exact opposite departure from random assembly, anti-nestedness. Here, we looked for nested and anti-nested patterns in the species composition of communities of internal parasites of 23 fish populations from two localities in Finland. We also compared various community parameters of nested and anti-nested assemblages of parasites, and determined whether nestedness may result simply from a size-related accumulation of parasite species by feeding fish hosts. Nested parasite communities were characterised by higher prevalence (proportion of infected fish) and intensities of infection (number of parasites per fish) than anti-nested communities; the two types of non-random communities did not differ with respect to parasite species richness, however. In addition, the correlation between fish size and the number of parasite species harboured by individual fish was much stronger in nested assemblages than in anti-nested ones, where it was often nil. These results were shown not to be artefacts of sampling effort or host phylogeny. They apply to both assemblages of adult and larval parasites, which were treated separately. Since species of larval parasites are extremely unlikely to interact with one another in fish hosts, the establishment of nestedness appears independent of the potential action of interspecific interactions. The species composition of these parasite communities is not determined from within the community, but rather by the extrinsic influence of host feeding rates and how they amplify differences among parasite species in probabilities of colonisation or extinction. Nested patterns occur in parasite communities whose fish hosts accumulate parasites in a predictable fashion proportional to their size, whereas anti-nested communities occur in parasite communities whose fish hosts do not, possibly because of dietary specialisation preventing them from sampling the entire pool of parasite species available locally. Thus, nestedness in parasite communities may result from processes somewhat different from those generating nested patterns in free-living communities.  相似文献   

11.
We examine the variability of riverine fish assemblages in terms of assemblage stability (i.e. variability of numbers of individuals within species over time and variability of assemblage total density), assemblage persistence, and assemblage species richness using data from a 9-yr survey of 27 sites within 18 coastal streams of North-western France. To do so, we test a hypothesized directional model for the expected relationships between environmental variability, assemblage variability, assemblage persistence, and assemblage species richness: 1) environmental variability within a given system is likely to generate variable local population size within this system, thus increasing local assemblages variability; 2) environmental variability should increase extinction rates (or, under constant colonization rates, decrease persistence), because the more population sizes vary within an assemblage, the more likely they are to become zero in some period of time; 3) assemblage variability should reduce assemblage species richness by increasing extinction rates within populations composing these assemblages. Results are compatible with our starting hypotheses and show that assemblage variability increased with environmental variability (i.e. discharge variability), that assemblage persistence decreased with environmental variability, and that species richness decreased with assemblage variability after environmental factors were controlled for. Thus, disturbance regimes, in our case, can alter the stability properties of assemblages and extrinsic determinants of assemblage variability may be an important determinant of assemblage species richness. These results have important conservation and management implications, due to the strong impact of river regulation on flow regimes.  相似文献   

12.
Abstract.  1. Several non-random patterns in the distribution of species have been observed, including Clementsian gradients, Gleasonian gradients, nestedness, chequerboards, and evenly spaced gradients. Few studies have examined these patterns simultaneously, although they have often been studied in isolation and contrasted with random distribution of species across sites.
2. This study examined whether assemblages of chironomid midges exhibit any of the idealised distribution patterns as opposed to random distribution of species across sites within the metacommunity context in a boreal drainage system. Analyses were based on stream surveys conducted during three consecutive years. Analytical approaches included ordinations, cluster analysis, null models, and associated randomisation methods.
3. Midge assemblages did not conform to Clementsian gradients, which was evidenced by the absence of clearly definable assemblage types with numerous species exclusive to each assemblage type. Rather, there were signs of continuous Gleasonian variability of assemblage composition, as well as significant nested subset patterns of species distribution.
4. Midge assemblages showed only weak relationships with any of the measured environmental variables, and even these weak environmental relationships varied among years.
5. Midge assemblages did not appear to be structured by competition. This finding was somewhat problematic, however, because the two indices measuring co-occurrence provided rather different signs of distribution patterns. This was probably a consequence of how they actually measure co-occurrence.
6. Although midge assemblages did not show a perfect match with any of the idealised distribution patterns, they nevertheless showed a resemblance to the empirical patterns found previously for several plant and animal groups.  相似文献   

13.
14.
Nested subset structure has been studied in archipelagoes and fragmented habitats, and has been attributed to differential colonization and extinction rates among species and nested environmental tolerances. In this experiment, we tested for nestedness in assemblages of mycophagous fly larvae. Twenty mushrooms in each of three size classes (4.8–6.0 g, 10–15 g, 21–32 g) were placed on moist potting soil in experimental cups. The cups were placed in oak and pine forests in Greenville, S.C., USA for 5 days, where they were available to ovipositing flies. Upon collection, the mushrooms were incubated in the laboratory for 3 weeks and all emerging flies were sorted by species, counted, and weighed. A random placement analysis was conducted to determine whether the species richness pattern was a sampling artifact of the species abundance distributions. The actual species richness pattern did not conform to the random placement model; most mushrooms contained significantly fewer species than predicted by random sampling. The communities were strongly nested as measured by two different indices, and the nestedness pattern was related to mushroom size. Small mushrooms usually produced no flies or a single species, Dohrniphora sp. (Phoridae). Medium and large mushrooms typically produced more species-rich communities that usually contained the phorid and Drosophila putrida, D. tripunctata, and Leucophenga varia. This core guild was nested within a more diverse assemblage that included D. falleni, Mycodrosophila dimidiata, a muscid, and two Leptocera sp. (sphaeroceridae). These patterns are tentatively explained in the context of nested desiccation tolerances, mediated by differences in mushroom size.  相似文献   

15.
Latitudinal patterns of biodiversity have been studied for centuries, but it is only during the last decades that species interaction networks have been used to examine the proposed latitudinal gradient of biotic specialization. These studies have given idiosyncratic results, which may either be because of genuine biological differences between systems, different concepts and scales used to quantify biotic specialization or because the methodological approaches used to compare interaction networks were inappropriate. Here we carefully examine the latitudinal specialization gradient using a global dataset of avian plant–frugivore assemblages and interaction networks. In particular, we test whether network‐derived specialization patterns differ from patterns based on assemblage‐level information on avian dietary preferences on specific food types. We found that network‐derived measures of specialization (complementary specialization H2′ and < d’>, modularity Q) increased with latitude, i.e. frugivorous birds divide the niche of fruiting plants most finely at high latitudes where they also formed more modular interaction networks than at tropical latitudes. However, the strength and significance of the relationship between specialization metrics and latitude was influenced by the methodological approach. On the other hand, assemblage‐level information on avian specialization on fruit diet (i.e. the proportion of obligate frugivorous bird species feeding primarily on fruit) revealed an opposed latitudinal pattern as more bird species were specialized on fruit diet in tropical than in temperate assemblages. This difference in the latitudinal specialization gradient reflects that obligate frugivores require a high diversity of fruit plants, as observed in tropical systems, and fulfil more generalized roles in plant–frugivore networks than bird species feeding on different food types. Future research should focus on revealing the underlying ecological, historical and evolutionary mechanisms shaping these patterns. Our results highlight the necessity of comparing different scales of biotic specialization for a better understanding of geographical patterns of specialization in resource–consumer interactions.  相似文献   

16.
Matthews  Jeffrey W. 《Plant Ecology》2004,174(2):271-278
Biotas of both geographical islands and habitat islands are often nested subsets of the biotas of successively more species-rich islands within the same system. The life history characteristics of a species may determine how that species contributes to the general pattern of species nestedness. Here, I investigate the floras of 56 sedge meadow wetlands in northern Illinois (USA) in order to characterize the degree of nestedness in these communities, determine which individual plant species contribute to the nested pattern, and investigate species characteristics that might be related to nonrandom patterns of distribution in individual plant species. The entire assemblage of species at all sedge meadows was significantly nested. Species richness and area were significantly correlated, and the nested pattern was closely related to site area, suggesting that species drop out of the assemblage in a predictable order as site area decreases. Some individual species exhibited nonrandom distributions across the sites, occurring more often in large, species-rich sites. Large sites were more likely than smaller sites to contain conservative species, i.e., those typical of pristine natural habitat, whereas nonconservative species were distributed more randomly among sites. Nested patterns of distribution of conservative species with respect to site area may result from their high probability of extinction on small sites or from a tendency for required habitats to co-occur on the same large sites. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Understanding causes of variation in multispecies assemblages along spatial environmental gradients is a long‐standing research topic in ecology and biogeography. Ecological networks comprising interacting species of plants and pollinators are particularly suitable for testing effects of environmental gradients on the functional structure and specialization in multispecies assemblages. In this study, we investigated patterns in functional assemblage structure and specialization of hummingbirds at the individual and species level along a tropical elevational gradient. We mist‐netted hummingbirds at three elevations in Costa Rica in seven temporally distinct sampling periods and used the pollen carried by hummingbird individuals to construct plant–hummingbird networks at each elevation. We measured four functional traits of hummingbird species and quantified different metrics of functional community structure. We tested the effect of elevation on functional metrics of hummingbird assemblages and specialization within the networks, employing the variability across sampling periods and hummingbird species to compare the respective metrics among elevations. Hummingbird species and individuals were more specialized at low and mid elevations than at the highest elevation. This pattern corresponded to a more even and over‐dispersed assemblage structure at the lower elevations throughout the year and suggests a high level of floral resource partitioning in functionally diversified communities. In contrast, an uneven and clustered functional structure of the highland assemblage across all sampling periods suggests that this assemblage was structured by environmental filtering and by niche expansion of hummingbird individuals and species at this elevation. We conclude that high degrees of specialization on specific floral resources might be crucial for the coexistence of hummingbird species in diversified lowland communities. Spatial variation in animal resource use may be an important crucial driver of spatial patterns in the functional structure of diversified species assemblages also in other types of ecological networks.  相似文献   

18.
We examined seasonal patterns of spatial variation in understory bird assemblages across a mosaic of upland and floodplain forests in central Amazonia, where variation in flooding patterns and floodwater nutrient load shapes a marked spatial heterogeneity in forest structure and composition. Despite great differences in productivity due to flooding by either nutrient-rich “white waters” (várzea) or nutrient-poor “black waters” (igapó), bird assemblages in the two floodplain forest types were relatively similar, showing lower abundances than adjacent upland forests (terra firme) and sharing a set of species that were absent or scarce elsewhere. Species that breed in pensile nests overhanging water were abundant in floodplain forests, whereas species that feed on the ground were generally scarce. Flooding affected assemblage dynamics in floodplain forests, with some influx of ground-dwelling species such as ant-following birds from adjacent upland during the low-water season, and the occupation by riverine and aquatic species such as kingfishers during floods. Spatial configuration influenced the seasonal pattern of assemblage structuring, with movements from terra firme occurring primarily to adjacent igapó forests. No such influx was detected in várzea forests that were farther from terra firme and isolated by wide river channels. Results support the view that habitat heterogeneity created by flooding strongly contributes to maintain diverse vertebrate assemblages in Amazonia forest landscapes, even in the case of largely sedentary species such as understory forest birds. Including both upland and floodplain forests in Amazonia reserves may thus be essential to preserve bird diversity at the landscape scale.  相似文献   

19.
Temporal variation in the composition of species assemblages could be the result of deterministic processes driven by environmental change and/or stochastic processes of colonization and local extinction. Here, we analyzed the relative roles of deterministic and stochastic processes on bird assemblages in an agricultural landscape of southwestern France. We first assessed the impact of land cover change that occurred between 1982 and 2007 on (i) the species composition (presence/absence) of bird assemblages and (ii) the spatial pattern of taxonomic beta diversity. We also compared the observed temporal change of bird assemblages with a null model accounting for the effect of stochastic dynamics on temporal beta diversity. Temporal assemblage dissimilarity was partitioned into two separate components, accounting for the replacement of species (i.e. turnover) and for the nested species losses (or gains) from one time to the other (i.e. nestedness-resultant dissimilarity), respectively. Neither the turnover nor the nestedness-resultant components of temporal variation were accurately explained by any of the measured variables accounting for land cover change (r2<0.06 in all cases). Additionally, the amount of spatial assemblage heterogeneity in the region did not significantly change between 1982 and 2007, and site-specific observed temporal dissimilarities were larger than null expectations in only 1% of sites for temporal turnover and 13% of sites for nestedness-resultant dissimilarity. Taken together, our results suggest that land cover change in this agricultural landscape had little impact on temporal beta diversity of bird assemblages. Although other unmeasured deterministic process could be driving the observed patterns, it is also possible that the observed changes in presence/absence species composition of local bird assemblages might be the consequence of stochastic processes in which species populations appeared and disappeared from specific localities in a random-like way. Our results might be case-specific, but if stochastic dynamics are generally dominant, the ability of correlative and mechanistic models to predict land cover change effects on species composition would be compromised.  相似文献   

20.
On any spatial scale, the species composition of a taxonomic group often departs from a phylogenetically random subset drawn from the pool of species available on a higher scale. Analysis of the uneven representation of related lineages in different assemblages can reveal the action of various forces shaping their diversification. For any assemblage, unequal diversification among lineages can be estimated using diversity skewness, an index of the balance of a phylogenetic tree whose values increase with increasing differences in diversification rates among tree branches. We tested for geographical patterns in the diversity skewness of flea assemblages parasitic on small mammals in 26 distinct geographic localities from the Palaearctic and 15 from the Nearctic. Overall, diversity skewness of the Nearctic flea assemblage was unexpectedly high compared to that of the global flea fauna, whereas that of the Palaearctic did not depart from the expectations of a null model. On a smaller scale, the diversity skewness of local flea assemblages was sometimes lower, sometimes higher, but, in most of the 41 localities, it did not differ significantly from that of random subsets taken from the species pool available on the larger spatial scale (either the world fauna or that of the biogeographical realm, i.e. Palaearctic or Nearctic). More importantly, among Palaearctic assemblages, diversity skewness increased with increasing latitude and/or decreasing mean air temperatures. The different patterns observed in the Palaearctic and Nearctic may be in part due the fact that flea diversification appears to have been more intense in the former than the latter, and to differences between them in relief and glacial history. Temperature‐driven speciation rates may well explain the latitudinal gradient in diversity skewness in the Palaearctic. The results illustrate the action of various biogeographical processes in shaping the uneven differentiation of flea lineages on different spatial scales. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 807–814.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号