首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Hypobaric hypoxia induces oxidative stress in rat brain   总被引:7,自引:0,他引:7  
High altitude exposure results in decreased partial pressure of oxygen and an increased formation of reactive oxygen and nitrogen species (RONS), which causes oxidative damage to lipids, proteins and DNA. Exposure to high altitude appears to decrease the activity and effectiveness of antioxidant enzyme system. The antioxidant system is very less in brain tissue and is very much susceptible to hypoxic stress. The aim of the present study was to investigate the time dependent and region specific changes in cortex, hippocampus and striatum on oxidative stress markers on chronic exposure to hypobaric hypoxia. The rats were exposed to simulated high altitude equivalent to 6100 m in animal decompression chamber for 3 and 7 days. Results indicate an increase in oxidative stress as seen by increase in free radical production, nitric oxide level, lipid peroxidation and lactate dehydrogenase levels. The magnitude of increase in oxidative stress was more in 7 days exposure group as compared to 3 days exposure group. The antioxidant defence system such as reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and reduced/oxidized glutathione (GSH/GSSG) levels were significantly decreased in all the three regions. The observation suggests that the hippocampus is more susceptible to hypoxia than the cortex and striatum. It may be concluded that hypoxia differentially affects the antioxidant status in the cortex, hippocampus and striatum.  相似文献   

3.
Oxidative stress appears to play an important role in degeneration of dopaminergic neurons of the substantia nigra (SN) associated with Parkinson's disease (PD). The SN of early PD patients have dramatically decreased levels of the thiol tripeptide glutathione (GSH). GSH plays multiple roles in the nervous system both as an antioxidant and a redox modulator. We have generated dopaminergic PC12 cell lines in which levels of GSH can be inducibly down-regulated via doxycycline induction of antisense messages against both the heavy and light subunits of gamma-glutamyl-cysteine synthetase, the rate-limiting enzyme in glutathione synthesis. Down-regulation of glutamyl-cysteine synthetase results in reduction in mitochondrial GSH levels, increased oxidative stress, and decreased mitochondrial function. Interestingly, decreases in mitochondrial activities in GSH-depleted PC12 cells appears to be because of a selective inhibition of complex I activity as a result of thiol oxidation. These results suggest that the early observed GSH losses in the SN may be directly responsible for the noted decreases in complex I activity and the subsequent mitochondrial dysfunction, which ultimately leads to dopaminergic cell death associated with PD.  相似文献   

4.
Summary. The polyamines spermidine and spermine have been hypothesized to possess different functions in the protection of DNA from reactive oxygen species. The growth and survival of mouse fibroblasts unable to synthesize spermine were compared to their normal counterparts in their native and polyamine-depleted states in response to oxidative stress. The results of these studies suggest that when present at normal or supraphysiological concentrations, either spermidine or spermine can protect cells from reactive oxygen species. However, when polyamine pools are pharmacologically manipulated to produce cells with low levels of predominately spermine or spermidine, spermine appears to be more effective. Importantly, when cells are depleted of both glutathione and endogenous polyamines, they exhibit increased sensitivity to hydrogen peroxide as compared to glutathione depletion alone, suggesting that polyamines not only play a role in protecting cells from oxidative stress but this role is distinct from that played by glutathione.  相似文献   

5.
In response to many stresses and pathologic states, including different models of nervous system injury, cells synthesize a variety of proteins, most notably the inducible 72 kDa heat shock protein 70 (Hsp70), which plays important roles in maintaining cellular integrity and viability. We report here that cultured astrocytes from rat diencephalon express high levels of Hsp70 upon exposure to elevated temperatures, and are less vulnerable to a subsequent oxidative stress. Complex oxidative stress was induced by exposure of astrocytes to an aqueous extract of tobacco smoke. This resulted in both glutathione and ATP depletion, along with cell death that proceeded through a necrotic pathway. Pretreatment of cultures with the glutathione replenishing agent, N-acetyl-L-cysteine, prevented glutathione and ATP loss as well as necrotic cell death. Thermal stress also protected astrocytes from necrotic cell death but without affecting glutathione or ATP levels. We propose that heat shock protects astrocytes from necrosis induced by oxidative stress, probably as a result of Hsp70 synthesis, through an antioxidant-ATP independent mechanism. As Hsp70 may transfer from glial to neuronal cells, its synthesis by astrocytes may represent an important survival mechanism by which astrocytes protect neurons against oxidative-mediated cell death.  相似文献   

6.
Diabetes,oxidative stress,and antioxidants: a review   总被引:23,自引:0,他引:23  
Increasing evidence in both experimental and clinical studies suggests that oxidative stress plays a major role in the pathogenesis of both types of diabetes mellitus. Free radicals are formed disproportionately in diabetes by glucose oxidation, nonenzymatic glycation of proteins, and the subsequent oxidative degradation of glycated proteins. Abnormally high levels of free radicals and the simultaneous decline of antioxidant defense mechanisms can lead to damage of cellular organelles and enzymes, increased lipid peroxidation, and development of insulin resistance. These consequences of oxidative stress can promote the development of complications of diabetes mellitus. Changes in oxidative stress biomarkers, including superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, glutathione levels, vitamins, lipid peroxidation, nitrite concentration, nonenzymatic glycosylated proteins, and hyperglycemia in diabetes, and their consequences, are discussed in this review. In vivo studies of the effects of various conventional and alternative drugs on these biomarkers are surveyed. There is a need to continue to explore the relationship between free radicals, diabetes, and its complications, and to elucidate the mechanisms by which increased oxidative stress accelerates the development of diabetic complications, in an effort to expand treatment options.  相似文献   

7.
Alzheimer's disease is associated with a systemic oxidative stress situation which can be followed in vivo by determining biomarkers such as plasma lipoperoxides and TBARS levels and the oxidation degree of glutathione in red blood cells. It has been observed that Alzheimer's patients show an increased level of plasma TBARS, which indicates a higher free radical oxidation of plasma unsaturated phospholipids, and an increased oxidation of red blood cells glutathione, which indicates oxidative stress in peripheral cells. This latter, glutathione oxidation, was found to correlate statistically with the cognitive status of the patients. Treatment with vitamin E resulted in an improved cognitive performance only of those patients in which the tocopherol acted as an antioxidant, according to blood indicative markers of oxidative stress. Indeed, the effect of vitamin E on Alzheimer's disease patients showed considerable variations both in its antioxidant function and in its capacity to improve cognitive functions. An important conclusion from the reported results is that epidemiological or clinical studies that aim to test the effect of antioxidant supplementation on given functions should include the determination of the antioxidant status of the patients by the measurement of blood markers of oxidative stress.  相似文献   

8.
Measures of oxidative stress in animals may be useful biomarkers of environmental stressors, such as anthropogenic pollution. In birds, studies of oxidative stress have focused on dietary antioxidants, primarily carotenoids, which are interesting due to their multiple physiological and pigmentary functions but therefore also unspecifically related to oxidative stress. A useful complementary biomarker may be the glutathione system, commonly used in human medicine, but rarely applied to wild, terrestrial vertebrates. In this study of urban versus rural adult and nestling great tits Parus major, we investigated both the carotenoid-based yellow plumage (by reflectance spectrometry) and the plasma levels of glutathione, the latter measured as total glutathione (tGSH) and as the ratio between oxidized and reduced glutathione (GSSG:GSH), respectively. We found that urban adults had higher current oxidative stress (GSSG:GSH) and paler yellow plumage compared to rural adults, suggesting elevated stress in the urban environment. Total glutathione levels (tGSH), however, which may indicate long-term up-regulation of the GSH reservoir, did not differ between the environments. Nestlings did not show any consistent pattern between environments in either tGSH or GSSG:GSH and, among individuals, glutathione levels were uncorrelated with carotenoid coloration. The results thus suggest some population-level correspondence between the two stress biomarkers in adult birds, but more work is obviously needed to understand how the two antioxidant systems interact in different individuals and in response to different environmental disturbances.  相似文献   

9.
Abstract

Although the importance of glutathione in protection against oxidative stress is well recognised, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13–14) aged 20–30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH)decreased by 13% with exercise. Of the measured red blood cell (RBC)antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

10.
Although the importance of glutathione in protection against oxidative stress is well recognized, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13-14) aged 20-30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH) decreased by 13% with exercise. Of the measured red blood cell (RBC) antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

11.
Glutathione is an abundant and ubiquitous low-molecular-weight thiol that may play a role in many cellular processes, including protection against the deleterious effects of reactive oxygen species. We address here the role of glutathione in protection against hydrogen peroxide (H2O2) in Haemophilus influenzae and show that glutathione and catalase provide overlapping defense systems. H. influenzae is naturally glutathione deficient and imports glutathione from the growth medium. Mutant H. influenzae lacking catalase and cultured in glutathione-deficient minimal medium is completely devoid of H2O2 scavenging activity and, accordingly, substantial amounts of H2O2 accumulate in the growth medium. H. influenzae generates H2O2 at rates similar to those reported for Escherichia coli, but the toxicity of this harmful metabolite is averted by glutathione-based H2O2 removal, which appears to be the primary system for protection against H2O2 endogenously generated during aerobic respiration. When H2O2 concentrations exceed low micromolar levels, the hktE gene-encoded catalase becomes the predominant scavenger. The requirement for glutathione in protection against oxidative stress is analogous to that in higher and lower eukaryotes but is unlike the situation in other bacteria in which glutathione is dispensable for aerobic growth during both normal and oxidative stress conditions.  相似文献   

12.
Cellular redox state is regulated by numerous components. The thiol-disulfide compound, glutathione, is considered to be one of the most significant, owing to its antioxidant power and potential influence over protein structure and function. While signaling roles for glutathione in plants have been suggested for several years, hard proof is scarce. Recently, through an approach based on genetic manipulation of glutathione in an oxidative stress background, we reported evidence that glutathione status is important to allow intracellular oxidation to activate pathogenesis-related phytohormone signaling pathways. This effect does not seem to be caused by changes in glutathione antioxidant capacity, and appears to be distinct to regulation through known players in pathogenesis responses, such as NPR1. Our data therefore suggest that new glutathione-dependent components that link oxidative stress to response outputs await discovery.  相似文献   

13.
The epsilon 4 allele of the apolipoprotein E gene (ApoE) is associated with Alzheimer's disease (AD). The extent of oxidative damage in AD brains correlates with the presence of the E4 allele of ApoE, suggesting an association between the ApoE4 genotype and oxygen-mediated damage in AD. We tested this hypothesis by subjecting normal and transgenic mice lacking ApoE to oxidative stress by folate deprivation and/or excess dietary iron. Brain tissue of ApoE-deficient mice displayed increased glutathione and antioxidant levels, consistent with attempts to compensate for the lack of ApoE. Folate deprivation and iron challenge individually increased glutathione and antioxidant levels in both normal and ApoE-deficient brain tissue. However, combined treatment with folate deprivation and dietary iron depleted antioxidant capacity and induced oxidative damage in ApoE-deficient brains despite increased glutathione, indicating an inability to compensate for the lack of ApoE under these conditions. These data support the hypothesis that ApoE deficiency is associated with oxidative damage, and demonstrate a combinatorial influence of genetic predisposition, dietary deficiency, and oxidative stress on oxidative damage relevant to AD.  相似文献   

14.
Atherothrombotic cardiovascular disease associated with hyperhomocysteinemia has been proposed to result, at least in part, from increased vascular oxidative stress. Here we characterize one mechanism by which homocyteine may induce a vascular cell type-specific oxidative stress. Our results show that L-homocysteine at micromolar levels stereospecifically increases lipid peroxidation in cultured endothelial cells, but not in vascular smooth muscle cells or when medium is incubated in the absence of cells. Consistent with these observations, homocysteine also increases the formation of intracellular reactive oxygen species. The pro-oxidant effect of homocysteine can be fully replicated by an equivalent concentration of homocystine (i.e., an oxidized form of homocysteine), but not with cysteine or glutathione. Homocyst(e)ine-dependent lipid peroxidation is independent of H(2)O(2) and alterations in glutathione peroxidase activity, but dependent on superoxide. Mechanistically, the pro-oxidant effect of homocysteine appears to involve endothelial nitric oxide synthase (eNOS), as it is blocked by the eNOS inhibitor L-N(G)-nitroarginine methyl ester. Thus, homocyst(e)ine actively promotes oxidative stress in endothelial cells via an eNOS-dependent mechanism.  相似文献   

15.
Oxidative stress in thalassemia is caused by secondary iron overload and stems from blood transfusion and increased iron uptake. In this study, we hypothesized that levels of o- and m-tyrosine, products of hydroxyl radical attack on phenylalanine, would be elevated in beta-thalassemia (intermediate). This study represents the first report in which specific markers of protein oxidative damage have been quantified in thalassemia. We used GC/MS to assay o- and m-tyrosine at the femtomole level using only a few microliters of plasma. Levels of both markers were significantly higher in patients with beta-thalassemia than in controls and were positively correlated with serum ferritin, malondialdehyde, superoxide dismutase, glutathione peroxidase and glutathione. We conclude that o- and m-tyrosine are useful biomarkers of oxidative damage to proteins in thalassemia (intermediate) and may also be useful markers in other iron overload diseases. Positive correlations between o- and m-tyrosine levels and malondialdehyde as well as antioxidants such as superoxide dismutase, glutathione peroxidase and glutathione, are indicative of the broad impact of oxidative stress on blood plasma in thalassemia, with up-regulation of antioxidant proteins probably reflecting a homeostatic response to these increased stress levels.  相似文献   

16.
Adaptation to various forms of stress has been found to be associated with increased cellular tolerance to myocardial ischemia. In this study, the effects of myocardial adaptation to oxidative stress was examined by injecting rats with endotoxin (0.5 mg/kg) and its non-toxic derivative, lipid A (0.5 mg/kg). Both compounds exerted oxidative stress within 1 h of treatment as evidenced by enhanced malonaldehyde formation. The oxidative stress disappeared steadily and progressively with time in concert with the appearance of the induction of glutathione and antioxidative enzymes that included superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. After 24 h of endotoxin or lipid A treatment, the amount of oxidative stress and antioxidant enzyme levels were significantly lower and higher, respectively, compared to those at the baseline levels. Corroborating these results, both endotoxin and lipid A provided protection against myocardial ischemia and reperfusion injury as evidenced by significantly improved postischemic recovery of left ventricular functions. The data presented here demonstrates that a controlled amount of oxidative stress induces the expression of intracellular antioxidants that can result in enhanced myocardial tolerance to ischemia. This suggests that myocardial adaptation to oxidative stress may be a potential tool for reduction of ischemic/reperfusion injury.  相似文献   

17.
This study aimed to determine whether patients with aseptic and bacterial meningitis presented alterations in oxidative stress parameters of cerebrospinal fluid (CSF). A total of 30 patients were used in the research. The CSF oxidative stress status has been evaluated through many parameters, such as lipid peroxidation through thiobarbituric acid reactive substances (TBARS) and antioxidant defense systems such as superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and ascorbic acid. TBARS levels, SOD and GST activity increase in aseptic meningitis and in bacterial meningitis. The ascorbic acid concentration increased significantly in patients with both meningitis types. The reduced glutathione levels were reduced in CSF of patients with aseptic and bacterial meningitis. In present study we may conclude that oxidative stress contributes at least in part to the severe neurological dysfunction found in meningitis.  相似文献   

18.
Stem cells are classically defined by their multipotent, long-term proliferation, and self-renewal capabilities. Here, we show that increased antioxidant capacity represents an additional functional characteristic of muscle-derived stem cells (MDSCs). Seeking to understand the superior regenerative capacity of MDSCs compared with myoblasts in cardiac and skeletal muscle transplantation, our group hypothesized that survival of the oxidative and inflammatory stress inherent to transplantation may play an important role. Evidence of increased enzymatic and nonenzymatic antioxidant capacity of MDSCs were observed in terms of higher levels of superoxide dismutase and glutathione, which appears to confer a differentiation and survival advantage. Further when glutathione levels of the MDSCs are lowered to that of myoblasts, the transplantation advantage of MDSCs over myoblasts is lost when transplanted into both skeletal and cardiac muscles. These findings elucidate an important cause for the superior regenerative capacity of MDSCs, and provide functional evidence for the emerging role of antioxidant capacity as a critical property for MDSC survival post-transplantation.  相似文献   

19.
Glutathione deficiency has been associated with a number of neurodegenerative diseases including Lou Gehrig's disease, Parkinson's disease, and HIV. A crucial role for glutathione is as a free radical scavenger. Alzheimer's disease (AD) brain is characterized by oxidative stress, manifested by protein oxidation, lipid oxidation, oxidized glutathione, and decreased activity of glutathione S-transferase, among others. Reasoning that elevated levels of endogenous glutathione would offer protection against free radical-induced oxidative stress, rodents were given in vivo injections of N-acetylcysteine (NAC), a known precursor of glutathione, to study the vulnerability of isolated synaptosomal membranes treated with Fe2+/H2O2, a known hydroxyl free radical producer. Protein carbonyls, a marker of protein oxidation, were measured. NAC significantly increased endogenous glutathione levels in cortical synaptosome cytosol (P < 0.01). As reported previously, protein carbonyl levels of the Fe2+/H2O2-treated synaptosomes were significantly higher compared to that of non-treated controls (P < 0.01), consistent with increased oxidative stress. In contrast, protein carbonyl levels in Fe2+/H2O2-treated synaptosomes isolated from NAC-injected animals were not significantly different from saline-injected non-treated controls, demonstrating protection against hydroxyl radical induced oxidative stress. These results are consistent with the notion that methods to increase endogenous glutathione levels in neurodegenerative diseases associated with oxidative stress, including AD, may be promising.  相似文献   

20.
Seven males performed two exhaustive cycling bouts (EX1 and EX2) at a work-rate of 90% of maximal oxygen uptake, separated by 60 min. During EX1 there was a significant accumulation of urate (from 0.16 +/- 0.02 to 0.27 +/- 0.03 micromol/kg d.w.) and allantoin (from 0.39 +/- 0.05 to 0.69 +/- 0.14 micromol/kg d.w.) in the muscle. An uptake of urate was observed in early recovery from EX1 (0-9 min: 486 +/- 136 micromol; p <.05). There was no exchange of total glutathione or cysteine over the muscle either during or after exercise, and muscle and plasma total glutathione remained unaltered (p <.05). The glycogen levels were lowered by 40% at the onset of EX2, yet the level of oxidative stress in EX1 and EX2 was similar as evidenced by a similar increase in muscle allantoin in both exercise bouts. The data suggest that urate is utilized as antioxidant in human skeletal muscle and that reactive oxygen species are formed in muscle during intense submaximal exercise. No net exchange of glutathione appears to occur over the muscle either at rest, during exercise or in recovery. Moreover, when an exhaustive exercise bout is repeated with lowered glycogen levels, the level of oxidative stress is not different than that of the first bout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号