首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site-directed mutagenesis was used to replace Lys68 of the human hypoxanthine phosphoribosyltransferase (HGPRTase) with alanine to exploit this less reactive form of the enzyme to gain additional insights into the structure activity relationship of HGPRTase. Although this substitution resulted in only a minimal (one- to threefold) increase in the Km values for binding pyrophosphate or phosphoribosylpyrophosphate, the catalytic efficiencies (k(cat)/Km) of the forward and reverse reactions were more severely reduced (6- to 30-fold), and the mutant enzyme showed positive cooperativity in binding of alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) and nucleotide. The K68A form of the human HGPRTase was cocrystallized with 7-hydroxy [4,3-d] pyrazolo pyrimidine (HPP) and Mg PRPP, and the refined structure reported. The PRPP molecule built into the [(Fo - Fc)phi(calc)] electron density shows atomic interactions between the Mg PRPP and enzyme residues in the pyrophosphate binding domain as well as in a long flexible loop (residues Leu101 to Gly111) that closes over the active site. Loop closure reveals the functional roles for the conserved SY dipeptide of the loop as well as the molecular basis for one form of gouty arthritis (S103R). In addition, the closed loop conformation provides structural information relevant to the mechanism of catalysis in human HGPRTase.  相似文献   

2.
We have developed a method of relating changes in hypoxanthine guanine phosphoribosyl transferase (HGPRTase) activity to the rate of phosphoribosyl pyrophosphate (PRPP) synthesis in isolated cell lines and in co-cultures of different cell lines. Using this approach, we have determined the response of the HGPRTase activity of communication-competent and communication-incompetent cells to changes in PRPP content. The HGPRTase activity of HGPRT+ communication-competent NS cells responds to changes of their own PRPP level, as well as to changes of the PRPP level of HGPRT- cells with which they are co-cultured. In contrast, the HGPRTase activity of the HGPRT+, but communication-incompetent L929 cells responds to changes of their own PRPP content but not to changes of the PRPP content of the cocultured HGPRT- cells. These and other experiments show that PRPP is freely exchangeable between communication-competent cells and that the intracellular activity of HGPRTase in one cell can be regulated by changes in the levels of its substrate in another cell through metabolic cooperation. The results also indicate that HGPRTase normally functions at a small fraction of its total activity, and that this can be greatly increased by raising the intracellular PRPP levels. Furthermore, it is found that when communication-competent cells establish intercellular communication, they share a common pool of PRPP and of purine nucleotides. This approach can be used as the basis of a biochemical method for the quantitation of metabolic cooperation between cells.  相似文献   

3.
Purified homogenous glutamic acid decarboxylase (GAD) from mouse brain and rabbit antiserum prepared to partially purified GAD gave only one sharp precipitin band in the Ouchterlony double diffusion test. GAD activity was inhibited partially by incubating with the antiserum. The maximal extent of inhibition was approximately 50 per cent. In the presence of antiserum all enzyme activity could be precipitated. The precipitates formed by GAD and antiserum had about 50 per cent of the enzyme activity and the Km values for both glutamic acid and pyridoxal phosphate were significantly higher than those of the control system. Pyridoxal phosphate protected GAD from inhibition only slightly, even at very high concentrations. The results suggest that the antibodies may not react with the catalytic site, but rather that the inhibition of enzyme activity is attributable to indirect effects.  相似文献   

4.
ACETYLCHOLINESTERASE IN DEVELOPING CHICK EMBRYO BRAIN   总被引:1,自引:0,他引:1  
–Acetylcholinesterase has been assayed at different stages of development to see whether changes in the activity of this enzyme are correlated in any way with the ontogenesis of electrical activity in the brain of growing chick embryo. The specific activity of the enzyme was highest in the synaptosomal fraction of the brain. The activity of the enzyme increased progressively with the age of the embryo. There were three isozymic forms of the enzyme in the 6-day-old embryo brain. A new isozyme appeared around the 9th day. The Km values of the enzyme for acetylthiocholine from 6- and 20-day-old embryo brains were 6.5 ± 10-5m and 3.3 ± 10-5m respectively. Enzyme preparations from 6-day-old embryos were found to lose 50 per cent of their activity when heated at 50°C for 10 min. Under similar conditions the loss in activity in 18-day-old embryo brain enzyme was 22 per cent.  相似文献   

5.
Human lymphoblasts derived from normal and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient individuals have been maintained in permanent tissue culture, and comparative studies of their purine metabolism have been undertaken. In agreement with previous observations in fibroblasts, the HGPRT-deficient lymphoblasts (less than 2% normal HGPRT activity) demonstrate threefold increases in the production of purines by the de novo pathway and four- to eightfold increases in intracellular concentrations of 5-phosphoribosyl 1-pyrophosphate (PRPP). The activities of the enzymes of purine metabolism responsible for production and utilization of PRPP were measured under optimal conditions in each cell line. The activities of adenine phosphoribosyltransferase (APRT), PRPP synthetase, and PRPP amidotransferase were independent of cell density and were not significantly different in the two cell lines. The K m values of the common substrate, PRPP, were determined in normal lymphoblast extracts for APRT (K m of 0.033 mM), HGPRT (K m of 0.074 mM), and PRPP amidotransferase (K m of 0.3 m M). The relatively low affinity of PRPP amidotransferase for PRPP suggests that deficiency of the HGPRT enzyme with its attendant increase in PRPP concentration should be accompanied by increased in vivo activity of PRPP amidotransferase, the first and presumed rate-limiting enzyme of de novo purine biosynthesis.This work was supported in part by National Institutes of Health Grants AM-05646, AM-13622, and GM-17702.  相似文献   

6.
Abstract— Microsomal, mitochondrial, synaptosomal and synaptic vesicle fractions of rat brain took up [3H-methyl]choline by a similar carrier-mediated transport system. The apparent Km for the uptake of [3H-methyl]choline in these subcellular fractions was about 5 × 10?5 M. Choline uptake was also observed in microsomal fractions prepared from liver and skeletal muscle. Virtually identical kinetic properties for [3H-methyl]choline transport were found in the synaptosomal fractions prepared from the whole brain, cerebellum or basal ganglia. Countertransport of [3H-methyl]choline from the synaptosomal fraction was demonstrated against a concentration gradient. HC-3 was a competitive inhibitor of the uptake of [3H-methyl]choline in brain microsomal, synaptosomal and mitochondria] fractions with respective values for Ki of 4.0, 2.1 and 2.3 × 10?5 M. HC-15 was a competitive inhibitor of the transport of [3H-methyl]choline in the synaptosomal fraction, with a Ki of 1.7 × 10?4 M. Upon entry into the microsomal fraction, 74 per cent of the radioactivity could be recovered as unaltered choline, 10 per cent as phosphorylcholine, 1.5 per cent as acetylcholine and 2.5 per cent as phospholipid. Choline acetyltransferase (EC 2.3.1.6) was assayed with [14C]acetylCoA in synaptosomal fractions prepared from basal ganglia and cerebellum, and in the 31,000 g supernatant fraction of a rat brain homogenate. Enzyme activity was 11-fold greater in the synaptosomal fraction from the basal ganglia than in that from the cerebellum. HC-3 did not inhibit choline acetyltransferase and there was no evidence for acetylation of HC-3. Our findings suggest that choline uptake is a ubiquitous property of membranes in the CNS and cannot serve to distinguish cholinergic nerve endings and their synaptic vesicles.  相似文献   

7.
1. The intracellular distribution of nitrogen, DPNH cytochrome c reductase, succinic dehydrogenase, and cytochrome c oxidase has been studied in fractions derived by differential centrifugation from rat and guinea pig spleen homogenates. 2. In the spleens of each species, the nuclear fraction accounted for 40 to 50 per cent of the total nitrogen content of the homogenate, and the mitochondrial, microsome, and supernatant fractions contained about 8, 12, and 30 per cent of the total nitrogen, respectively. 3. Per mg. of nitrogen, DPNH cytochrome c reductase was concentrated in the mitochondria and microsomes of both rat and guinea pig spleens. Seventy per cent of the total DPNH cytochrome c reductase activity was recovered in these two fractions. The reductase activity associated with the nuclear fraction was lowered markedly by isolating nuclei from rat spleens with the sucrose-CaCl2 layering technique. The lowered activity was accompanied by the recovery of about 90 per cent of the homogenate DNA in the isolated nuclei, indicating that little, if any, of the reductase is present in spleen cell nuclei. 4. Per mg. of nitrogen, succinic dehydrogenase was concentrated about 10-fold in the mitochondria of rat spleen, and 65 per cent of the total activity was recovered in this fraction. 5. Cytochrome c oxidase was concentrated, per mg. of nitrogen, in the mitochondria of both rat and guinea pig spleens. The activity associated with the nuclear fraction was greatly diminished when this fraction was isolated from rat spleens by the sucrose-CaCl2 layering technique. Only 50 to 70 per cent of the total cytochrome c oxidase activity of the original homogenates was recovered among the four fractions from both rat and guinea pig spleens, while the specific activities of reconstructed homogenates were only 55 to 75 per cent of those of the original whole homogenates. This was in contrast to the results with DPNH cytochrome c reductase and succinic dehydrogenase where the recovery of total enzyme activity approached 100 per cent, and the specific activities of reconstructed homogenates equalled those of the original homogenates. The recovery of cytochrome c oxidase was greatly improved when only the nuclei were separated from rat spleen homogenates. 6. Data were presented comparing the concentrations (ratio of activity per mg. of nitrogen of the fraction to activity per mg. of nitrogen of the homogenate) of DPNH cytochrome c reductase in mitochondria and microsomes derived from different organs of different animals. 7. Data were presented comparing the activities per mg. of nitrogen of DPNH cytochrome c reductase in homogenates from several organs of various animals.  相似文献   

8.
—1. The effect of pentamethylene tetrazole (PTZ) or metrazol on rat brain phosphorylase (E.C.2.4.1.1.) was studied in vitro. The inhibitory action of PTZ was dependent on its concentration, being most marked in about 4 mM concentration. The inhibitory effect could be reversed to a great extent by inclusion of 5’AMP in the preincubation mixture. GMP, UMP and pyridoxal phosphate had no protective action under similar conditions. 2. PTZ did not appear to be a general inhibitor of enzymes. It had no effect on the activity of rat brain guanine deaminase, E. coli RNA-polymerase, or E. coli aspartate kinase. The inhibition of rat liver phosphorylase activity by PTZ was of a lower order (20 per cent) in comparison with that of brain phosphorylase (56 per cent). 3. Megimide, another convulsant drug, also inhibited the brain phosphorylase in vitro, but the effect of Nikethamide was not so pronounced. Pentothal sodium (a sedative drug) had very little effect on the brain phosphorylase activity.  相似文献   

9.
Schistosomiasis is a trematode infection of some 200 million people. The hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) of the major etiologic agent, Schistosoma mansoni, has been proposed as a potential target for antischistosomal chemotherapy [Dovey, H. F., McKerrow, J. H., & Wang, C. C. (1984) Mol. Biochem. Parasitol, 11, 157-167]. The steady-state kinetic mechanism for the schistosomal HGPRTase has been determined by including both hypoxanthine and guanine in the forward and reverse reactions under identical conditions. Double-reciprocal plots of initial velocity versus the concentration of one substrate, at a series of fixed concentrations of the other, give groups of intersecting straight lines indicating a sequential mechanism for the schistosomal HGPRTase-catalyzed reactions. In product inhibition studies, the results show that magnesium pyrophosphate (MgPPi) is a noncompetitive inhibitor with respect to dimagnesium phosphoribose pyrophosphate (Mg2PRPP), hypoxanthine, and guanine. Also, magnesium inosine monophosphate (MgIMP) and magnesium guanosine monophosphate (MgGMP) are noncompetitive inhibitors with respect to hypoxanthine or guanine, respectively, but are competitive inhibitors to Mg2PRPP. Furthermore, Mg2PRPP is a competitive inhibitor with respect to MgIMP and MgGMP but is a non-competitive inhibitor to MgPPi. The minimum kinetic model which fits the experimental data is an ordered bi-bi mechanism, where the substrates bind to the enzyme in a defined order (first Mg2PRPP followed by the purine bases), while products are released in sequence (first MgPPi followed by MgIMP or MgGMP).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
1. A method is described for the colorimetric determination of peroxidase with N,N-dimethyl-p-phenylenediamine. The amount of red pigment formed by peroxidase is proportional to the concentration of enzyme and to the time of incubation during the first 40 to 90 seconds. The influence of the concentration of enzyme, N,N-dimethyl-p-phenylenediamine, H2O2, the time of incubation, pH, the temperature, and the possible interference by oxidizing and reducing agents of tissues has been tested. 2. The method has been used to follow the uptake of intravenously injected horseradish peroxidase by 18 different tissues of the rat over a period of 30 hours. The highest concentration of the injected tracer enzyme was found in extracts of kidney, liver, bone marrow, thymus, and spleen. Considerable amounts were taken up by pancreas, prostate, epididymis, and small intestine. Lower concentrations were found in extracts of lung, stomach, heart, and skeletal muscle, aorta, skin, and connective tissue. No uptake was observed by brain and peripheral nerve tissue. 3. Tissue homogenates containing high concentrations of the injected peroxidase, in general also showed high or average activity of acid phosphatase. 4. Six hours after intravenous administration, the liver contained 27 per cent, the kidney 12 per cent, and the spleen, 1.4 per cent of the injected dose. 5. Approximately 20 per cent of the injected peroxidase was excreted in the urine during the first 6 hours, and the concentration of peroxidase in blood serum and urine fell exponentially during this time. After 6 hours, only low concentrations were excreted in the urine but low enzyme activity was still detectable after 30 hours. Approximately 6 per cent of the injected dose was excreted in the feces from 6 to 20 hours after administration. 6. After feeding through a stomach tube, low concentrations of peroxidase were found in blood serum and urine. Considerable variations in the extent of absorption from the gastrointestinal tract were observed in individual rats.  相似文献   

11.
Abstract— The question of a constant density of glial cells in mammalian cerebral cortex regardless of species was examined by surveying the cortical activities of two enzymes primarily localized to dial cells. The cortical activity of butyrylcholinesterase (EC 3.1.1.8) was essentially constant at a rate of approx. 0.1 μmol of butyrylthiocholine hydrolysed min-1 g-1 over the range of species from rat (brain wt., 1.6 g) to fin whale and sperm whale (brain wt., 6800 and 7800 g, respectively). Over the same range the activity of cortical acetylcholinesterase, a neuronal enzyme, decreases by a factor of 7. Thus, butyrylcholinesterase ranged from < 2 per cent (in small rodent brains) to approximately 10 per cent (in whale brain) of the cortical acetylcholinesterase activity. The cortical activity of carbonic anhydrase (EC 4.2.1.1) was constant at a rate of 6.2 (± 0.25) μmol of CO2 evolved min-1 g-1 over the range of species from guinea-pig (brain wt., 4.75 g) to fin whale (brain wt., 6800 g). These data obtained by assaying the dehydration reaction were confirmed by limited assays of the esterase activity of the enzyme (with p-nitrophenylacetate as substrate) and agreed with limited, previously reported data for the hydration reaction. Thus, the circumstantial evidence strongly favoured a relative constancy of cortical glial cell density regardless of species. The rates of anaerobic glycolysis in the cerebral cortex of various species were also investigated. For six species from mouse (brain wt., 0.4 g) to beef (brain wt., 380 g) cortical anaerobic glycolysis varied only slightly in the range of 50–62 μmol of CO2 evolved h-1 g-l, whereas cortical oxygen consumption for the same range of species decreased by a factor of 3. Previously frozen samples of beef cortex glycolysed at 35 per Cent of the rate of fresh (unfrozen) samples. Since identical rates were obtained for previously frozen samples of fin whale cerebral cortex, we concluded that the relative constancy of cortical anaerobic glycolysis could be extended to the range from mouse to whale and that this aspect of cortical metabolism is probably primarily glial in localization. Some implications of the latter conclusion for the proposed role of astrocytes as modulators of neuronal activity have been discussed.  相似文献   

12.
Abstract— The effect of neonatal thyroidectomy on the cyclic AMP system in the developing rat brain was examined. Administration of 131I at birth led to a 16 per cent reduction in brain weight and a 70 per cent reduction in body weight by 40 days of age. The level of cyclic AMP in the brain increased 5-fold between birth and 40 days of age and this increase was partially reduced by early thyroidectomy. A similar increase in the activity of adenyl cyclase and phosphodiesterase was observed during development, but thyroidectomy produced no detectable changes in the activity of either enzyme. The activity of the cyclic AMP-dependent protein kinase was already maximal at birth and also was unaffected by thyroidectomy.
Norepinephrine increased levels of cyclic AMP 4- to 5-fold in brain slices prepared from adult rats, but was without effect on slices prepared from newborn or 3-day-old rats. The response to norepinephrine in thyroidectomized rats did not differ from that in control rats at any of the ages examined. Our findings indicate that neonatal hypothyroidism does not deleteriously affect the development of the cyclic AMP system in the rat brain.  相似文献   

13.
—Lipid-free extracts of rat and human brain have been prepared and shown to contain phospholipase A1 and A2 activities and a lysophospholipase. The phospholipase Aj activity has pH optima of 4·2 and 4·6 in rat and human brain, respectively; it can be partially purified and isolated in high yields by dialysing the extracts at low pH. The purified preparations hydrolyse the ester bond at the 1-position in lecithin, phosphatidyl-ethanolamine and phosphatidylserine, but have little or no action on triglyceride or cholesterol ester. An assay system for the enzyme is described. Phospholipase A2 activity is optimal at pH 5·5 in rat brain extracts and at pH 5·0 in extracts of human brain. The phospholipase A2 activity of human cerebral cortex is largely unaffected by heating extracts at 70°C for 5 min, whereas this treatment substantially inactivates phospholipase A1 and completely destroys lysophospholipase. Phospholipase A1 is widely distributed in both grey and white matter of human brain and is also present in peripheral nerve. Phospholipase A2 activity is lower than A1 in all regions of the CNS examined so far, and is absent from peripheral nerve. Neither enzyme appears to require Ca2+ but both are inhibited by di-isopropylfluorophosphate (DFP, 2 × 10?6 m) and thus differ from phospholipase A of pancreas. These studies confirm that the phospholipase A1 and A2 activities in brain are due to separate enzymes.  相似文献   

14.
The characteristics of the enzyme γ-glutamyltranspeptidase were determined in frog liver and compared to those of the rat. In Rana pipiens, tissue distribution studies indicated the order of activity to be: kidney >>> liver >> nerve > egg > lung > heart > skeletal muscle in homogenates. In the Rana pipiens relative to the Fischer 344 rat, the activity of the liver enzyme was somewhat greater (1·8-fold) and the kidney enzyme substantially less (25-fold). Frog liver γ-glutamyltranspeptidase displayed strain-dependent differences in activity with Rana pipiens and Rana sylvatica exhibiting comparable activities and Xenopus laevis exhibiting 20-fold lower activities. No influence of sex was apparent in Rana pipiens in contrast to the sex dependent differences observed in the Fischer 344 rat: ♀ : ♂ = 7:1. In homogenates and plasma membrane fractions of Rana pipiens, Xenopus laevis and the Fischer 344 rat, high, and comparable relative specific activities, were observed, 8–11, coupled with protein yields of 2·2–2·5 per cent indicating the enzyme to be plasma membrane bound and associated with the sinusoidal surface of the liver cell. Both the frog Rana pipiens and Xenopus laevis and Fischer 344 rat liver plasma membrane enzymes displayed comparable temperature-induced activation (1·51–1·74-fold) but with a peak for the frogs at 60°C and for the rat at 50°C. Both Acivicin and maleate inhibited the liver plasma membrane γ-glutamyltranspeptidase of both Rana pipiens and the Fischer 344 rat, but the frog enzyme was less sensitive (89 per cent decrease versus 97 per cent decrease) to 150 μM Acivicin and more sensitive (65 per cent decrease versus 35 per cent decrease at 150 mM maleate) to maleate. Kinetic studies indicated that the liver plasma membrane enzyme from Rana pipiens had a Km of 0·61 mM and Vmax of 55·6 nmol mg?1 min?1 and that from the Fischer 344 rat had a Km of 3·57 mM and Vmax of 71·4 nmol mg?1 min?1.  相似文献   

15.
Hypoxanthine-guanine phosphoribosyltransferase is a ubiquitous human enzyme, the inherited deficiency of which leads to a specific metabolic-neurological syndrome. Native acrylamide isoelectric focusing revealed that the human enzyme consists of different numbers of isoenzymes depending on the tissue of origin. The erythrocytic enzyme has the most isoenzymes while the enzyme from cultured fibroblasts has only a single isoenzyme. The isoenzyme pattern of the erythrocytic enzyme changes on storage of the crude hemolysate at 4 C. Treatment of the stored crude hemolysate with 4.5 m urea and 0.35 mm -mercaptoethanol results in an isoenzyme pattern similar to that of the fresh crude extract. Thus the additional isoenzymes are generated on storage not by covalent modification of the enzyme but probably by binding of small molecules to the enzyme or to association of the enzyme molecules. Hypoxanthine-guanine phosphoribosyltransferase has been purified to 80% homogeneity in three steps, DEAE Sephadex chromatography, heat treatment at 85 C for 5 min, and hydroxylapatite chromatography. Denaturing two-dimensional gel electrophoresis of the erythrocytic enzyme revealed that the erythrocytic enzyme is composed of three major types of subunits (1–3) with the same molecular weight but different isoelectric points. In contrast, the fibroblast enzyme is composed of only a single type of subunit, which comigrates with subunit 1 of the erythrocytic enzyme. Since there is a single genetic locus in humans for HGPRTase (the enzyme is X linked) (Nyhan et al., 1967), the observed subunit modification of the erythrocyte enzyme appears to be the result of posttranslational modification. These findings provide a simple explanation for the observed electrophoretic properties of human HGPRTase. A patient with 0.5% of HGPRTase activity in his erythrocytes was found to have small amounts (> 0.5% but < 5% of normal) of the erythrocytic HGPRTase subunits.This work was supported by a grant from NIAMDD, National Institutes of Health, United States Public Health Service. L. J. G. was supported by a fellowship from the National Institute of Child Health and Human Development. D. W. M. is an Investigator, Howard Hughes Medical Institute.  相似文献   

16.
The state of aggregation and the activity of polyribosomes as well as the activity of the pH 5 enzyme fraction were studied at two stages of postnatal brain development, 9 and 50 days after birth. When the polyribosomes were prepared at 0°C in the presence of 5 mm -Mg2+, more than 85 per cent of the polyribosome material exhibited a sedimentation coefficient higher than 110 S. High Mg2+ concentrations are, therefore, unnecessary to obtain highly aggregated brain polyribosomes. The basal amino acid incorporating activity of both 9- and 50-day-old rat brain preparations is at least equal to that of rat liver. When prepared by the same procedure as above, 9-day-old rat brain polyribosomes seem to be more active (20 per cent) than those of adult brain. However, this difference in activity depends on the presence of a non-ribosomal inactive contaminant which is always present in higher amounts in adult brain preparations. When purified from this contaminant, the preparations do not differ in activity. High Mg2+ concentrations are also not necessary for optimal protein synthetic activity and, in fact, are inhibitory. When assayed with both types of highly aggregated polyribosomes, the pH 5 enzyme fraction from adult brain is clearly less active than that of 9-day-old rats. These results suggest that the loss of brain protein synthesis during development does not depend on the stability of the messenger RNA-ribosome complex but only on the soluble pH 5 enzyme fraction.  相似文献   

17.
—The regional distributions of serine hydroxymethyltransferase (SHMT) and glycine transaminase (GT) have been determined in five areas of the CNS of the rat. The SHMT activity per mg protein varied in these areas in the following order: medulia-pons and spinal cord > cerebellum > midbrain > telencephalon. The GT activity per mg protein was essentially the same in the four brain areas, whereas, in the spinal cord it was lower. The activity of GT did not correlate with the glycine content (r=?0.45. P > 0.05). However, SHMT activity per mg protein was correlated with the glycine content in four regions (the telencephalon, midbrain, medulla-pons and spinal cord; r= 0.997, P < 0.05). When the activity of SHMT was expressed per relative number of mitochondria, the enzyme levels were correlated with the glycine content in all five areas (r= 0.952, P < 0.05). The distribution of SHMT was determined in the primary subcellular fractions of the CNS. The SHMT activity in these areas of the CNS appeared to be located predominately in paniculate structures, while only 1 to 4 per cent was found in the soluble fraction. The crude nuclear (P1) and the crude mitochondrial (P2) fractions contained 90–97 per cent of the activity. Subfractionation of P2 pellets obtained from the telencephalon, medulla-pons and spinal cord indicated the SHMT activity was localized in both ‘free’ and occluded mitochondria.  相似文献   

18.
OCCURRENCE AND LOCALIZATION OF BRAIN PHENOLSULPHOTRANSFERASE   总被引:4,自引:3,他引:1  
—Rat brain contains the enzyme which forms sulphate conjugates of phenols, phenolsulphotransferase (EC 2.8.2.1), but the physiological role of the enzyme is unclear. The enzyme is unevenly distributed in rat brain, with the activity 13 times higher in the hypothalamus than in the cerebellum. Phenolsulphotransferase does not seem to be primarily located in glial cells. Cultured cells (type C6 astrocytoma) derived from rat glia had less than 1 per cent of the phenolsulphotransferase activity of whole rat brain. Sulphate conjugation of neutral compounds may be important in their removal from brain. The pineal and pituitary glands, areas outside the blood-brain barrier had very low phenolsulphotransferase activity. The activity of the enzyme in brain varied widely among different species: rabbit and rat had much higher levels of activity than mouse or frog; the activity in human brain was intermediate. Phenolsulphotransferase also occurred in other organs, including liver, heart, testes, lung, spleen, salivary glands, and intact or decentralized superior cervical ganglion. There was no correlation of enzyme activity with adrenergic or cholinergic innervation, or with the known roles of various tissues in drug metabolism or detoxification. The enzyme activity does not seem to be under neuronal control since ganglionectomy did not affect the phenolsulphotransferase activity of salivary glands. The precise localization of phenolsulphotransferase remains to be established, as well as the physiological importance of sulphate conjugation of phenols in brain and other organs.  相似文献   

19.
The kinetic properties of soluble and membrane-bound choline acetyltransferase (ChAc) were determined as a function of homogenization media and solubilization procedure in various regions of rat brain. Treatment of homogenate and/or subcellular fractions with KCl, Triton X-100, or ether dramatically altered the apparent Vmax and the degree of solubilization of the enzyme, but no fraction exhibited Km values substantially different from 12 μM for acetyl-CoA and 200 μM for choline. On the other hand, increasing the ionic strength of the assay medium for a given fraction from 0-02 M to 0-5 M increased both Vmax and Km values for both substrates. The absolute levels and subcellular distribution of ChAc were determined in 11 brain regions to localize cholinergic cell bodies and nerve endings. Levels of ChAc varied from 139 m-units/g tissue in caudate-putamen to 5-7 m-units/g tissue in cerebellum. The fraction of ChAc activity associated with synaptosomes varied from near 75 per cent in caudate-putamen, hippocampus and cortical regions to near 20 per cent in septum, locus coeruleus area and substantia nigra area. The apparent parallel distribution of cholinergic and catecholaminergic nerve endings is discussed in terms of a hypothetical model for the pathophysiology and treatment of Parkinson's syndrome.  相似文献   

20.
Arylsulphatases in human brain: assay, some properties, and distribution   总被引:2,自引:0,他引:2  
Abstract— Arylsulphatases (aryl-sulphate sulphohydrolases; E.C. 3.1.6.1) in human brain were studied using a highly sensitive fluorometric technique based on the use of 4-methyl-umbelliferone sulphate (MUS) as substrate. In the dialysed homogenate of human brain at least two enzymes could be distinguished on the basis of pH optima and substrate concentration. One MUS-sulphatase, of the ‘insoluble’ type, exhibited a pH optimum of 6–9 and an apparent Km of 0.05 mM, whereas the second, belonging to the ‘soluble’ type, exhibited pH optimum of 6–0 and an apparent Km of 6.25 mM. Pronounced activities of the two arylsulphatases were observed in the 18,000 g sediment. About 25 per cent of the total tissue activity of the ‘soluble’-type MUS-sulphatase was found in the soluble subcellular fraction. However, this enzyme was completely solubilized by extraction of acetone-dried human brain with acetate buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号