首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
污泥厌氧消化是在消化污泥微生物组的协调下将剩余污泥中有机物转化为甲烷的微生物过程。与传统厌氧消化过程不同,污泥厌氧消化系统的进料底物为含有大量微生物细胞及胞外多聚物等复杂大分子有机物的剩余污泥。因此,厌氧消化污泥微生物组的种群组成、功能及种群间互作关系等异常复杂,使厌氧消化污泥微生物组分析成为难点问题。但近年来高通量测序技术及生物信息学分析方法的快速发展为消化污泥微生物组研究提供了契机,并迅速推动了该研究领域的发展。本文从4个方面梳理、总结厌氧消化污泥微生物组的研究及应用现状:剩余活性污泥结构、组成及其厌氧消化;基于16SrRNA基因序列测序的微生物组研究;基于宏基因组及宏转录组分析的微生物组研究;厌氧消化污泥微生物组研究案例分析。最后我们提出了厌氧消化污泥微生物组研究亟待解决的关键科学问题。  相似文献   

2.
水体沉积物有机污染是当前全球关注的重要环境问题。微生物具有呼吸和代谢多样性,能以多种污染物作为厌氧呼吸的电子供体或受体,与周围环境中的生物和非生物因素组成代谢网络耦合有机污染物降解转化,是有机污染水体沉积物修复的重要驱动者。本文重点综述了微生物厌氧呼吸、电子传递网络及其对有机污染水体沉积物的修复机制研究进展,并对有机污染水体沉积物微生物修复理论和技术研究的问题和挑战进行了探讨。  相似文献   

3.
【背景】电化学厌氧消化(electrochemical anaerobic digestion,EAD)系统的代谢途径由具备不同功能的微生物所主导,其代谢通量与功能微生物丰度、活性及群落结构相关。【目的】探究EAD产甲烷代谢通量与微生物的关系。【方法】采用代谢通量分析(metabolic flux analysis,MFA)方法,以pH为扰动因子得到微生物群落与产甲烷通量的响应关系。【结果】pH 7.5扰动时产甲烷通量最大为0.398 4±0.029 3,较对照组(pH 6.9)的0.297 4±0.012 7和扰动组(pH 6.3)的0.136 5±0.012 0分别提高了25%和65%。另外,平均有33.8%±3.1%的氢气(通量)用于还原二氧化碳产甲烷和乙酸,平均有21.0%±2.6%的乙酸(通量)转化为甲烷。此外,产甲烷通量与Mariniphaga、Methanosaeta和Desulfomicrobium的丰度呈正相关,与Sedimentibacter的丰度呈负相关且影响显著。【结论】在EAD产甲烷体系中产甲烷菌和产酸菌共存时,pH值略大于7.0的环境有利于甲烷的生成,改变E...  相似文献   

4.
微生物组学及其在厌氧消化中的研究进展   总被引:1,自引:0,他引:1  
我国每年产生大量的有机废弃物,如果处置不当将会对生态、气候以及人类健康造成重大影响。厌氧消化是一种可靠的、绿色的、可持续的有机废弃物处理方式,但由于缺乏准确有效的监测手段,厌氧消化微观过程常常被视为“黑盒”。随着微生物组学的发展,学者们在菌群与运行参数关联性分析、代谢途径分析等方面有了更深入的认识。本文从“三阶段、四菌群”的厌氧消化过程出发,介绍了常用微生物组学的类型,包括:16S rRNA基因组、宏基因组、宏转录组和宏蛋白组;详细阐述了物种组成分析、α多样性分析、OTU相似性分析以及多元统计学分析等6种常用的微生物群落生物信息学分析方法;系统回顾了厌氧消化过程的微生物学研究进展,以期能为分析厌氧消化的微生物群落结构和功能、开发新的厌氧消化工艺和技术提供支持。  相似文献   

5.
厌氧颗粒污泥(anaerobicgranularsludge,AnGS)是由多种功能微生物组成的自固定化聚集体,具有容积负荷高、工艺简单、剩余污泥产量低等优点,在废水处理领域中显示出巨大的技术和经济潜力,被认为是一种很有前景的低碳废水处理工艺。本文系统总结了近年来厌氧颗粒污泥微生物结构和功能的研究成果,从微生物学角度讨论了厌氧颗粒污泥形成及稳定的影响因素,并对今后厌氧颗粒污泥的研究进行了展望,以期为后续厌氧颗粒污泥技术的深入研究和实际工程应用提供参考。  相似文献   

6.
微生物降解木质纤维素类生物质固废的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
自然界中的细菌、真菌、放线菌及某些病毒是降解木质纤维素的主要微生物,它们在生物质固废能源的转化和利用上起桥梁作用,能变废为宝,实现生物质固废的资源化利用。根据生物质固废相关处理技术及生物质固废资源化成果转化,总结微生物降解生物质固废的有关处理技术及应用。在综合国内外现有研究成果的基础上,以木质纤维素类生物质固废为例,从微生物种类和生物质固废资源化成果转化两个方面对微生物降解木质纤维素类生物质固废有关技术进行分析,提出每项技术存在的问题,并展望每项技术的发展前景。  相似文献   

7.
微生物在有机固废堆肥中的作用与应用   总被引:6,自引:3,他引:6       下载免费PDF全文
好氧堆肥是实现有机固体废弃物资源化利用的主流处理方式.堆肥腐熟是一个由微生物主导的生理生化过程,堆料通过微生物发酵实现矿质化、腐殖化和无害化,转变成腐熟的有机肥.传统的好氧堆肥存在发酵周期长、养分损失、恶臭及温室气体排放等不足.在堆肥过程中添加微生物是弥补传统好氧堆肥缺陷、提高堆肥品质和功效的有效方法.近年来,国内外在...  相似文献   

8.
有机卤呼吸细菌(organohalide-respiring bacteria, OHRB)在氯代烯烃污染地下水的原位生物修复中扮演着关键性的角色,提高其丰度及活性对氯代烯烃的完全去除具有重要意义。在实际环境中,有机卤呼吸细菌往往与多种微生物共存,微生物种间代谢互作现象十分普遍,有机污染物的完全无害化往往需要通过微生物菌群的协同代谢作用来实现。因此,本文围绕微生物种间代谢互作进行综述,对目前获得的脱氯微生物菌种资源及脱氯机理进行了回顾,重点阐述了专性OHRB、非专性OHRB和非OHRB的种间代谢互作行为及机制,并提出以种间代谢互作为指导进行合成微生物群落的构建来有效提高氯代烯烃厌氧生物降解效率,为实现环境氯代烯烃类有机污染物的快速、彻底无害化提供理论指导。  相似文献   

9.
内蒙古自治区二连盆地、海拉尔盆地是我国重要的煤层气产区,其中生物成因煤层气是煤层气的重要来源,但复杂物质转化产甲烷相关微生物群落结构及功能尚不清楚。【目的】研究煤层水中的微生物代谢挥发性脂肪酸产甲烷的生理特征及群落特征。【方法】以内蒙古自治区二连盆地和海拉尔盆地的四口煤层气井水作为接种物,分别添加乙酸钠、丙酸钠和丁酸钠厌氧培养;定期监测挥发性脂肪酸降解过程中甲烷和底物的变化趋势,应用高通量测序技术,分析原始煤层气井水及稳定期产甲烷菌液的微生物群落结构。【结果】除海拉尔盆地H303煤层气井微生物不能代谢丙酸外,其他样品均具备代谢乙酸、丙酸和丁酸产生甲烷的能力,其生理生态参数存在显著差异,产甲烷延滞期依次是乙酸<丁酸<丙酸;最大比产甲烷速率和底物转化效率依次是丙酸<乙酸<丁酸。富集培养后,古菌群落结构与煤层气井水的来源显著相关,二连盆地优势古菌为氢营养型产甲烷古菌Methanocalculus (相对丰度13.5%–63.4%)和复合营养型产甲烷古菌Methanosarcina (7.9%–51.3%),海拉尔盆地的优势古菌为氢营养型产甲烷古菌Methanobact...  相似文献   

10.
【背景】厌氧消化是我国餐厨垃圾处理的主要方法,微生物在其处理过程中起到关键作用,但是目前对其不同工艺单元微生物群落结构的研究较少。【目的】通过分析各工艺单元的微生物多样性与群落结构,为改进餐厨垃圾资源化处理技术、提高资源利用效率提供科学依据。【方法】采集某餐厨垃圾处理厂油水分离、厌氧发酵、沼渣脱水等3个工艺单元产生的废液样品,采用16S rRNA基因高通量测序技术,研究其菌群组成、丰度、优势菌群及其与环境因子的相关性。【结果】初始油水分离样品中的微生物群落种类相对较少,而经厌氧发酵和沼渣脱水处理后样品中的微生物群落种类较丰富。在门水平上,厚壁菌门(Firmicutes)在各单元样品中所占平均比例最高,为81.1%,其次为拟杆菌门(Bacteroidetes)和绿弯菌门(Chloroflexi),分别占15.81%和4.59%;在属水平上,相对丰度较高的菌属为乳酸菌属(Lactobacillus)、互营单胞菌属(Syntrophomonas)等。餐厨垃圾处理过程中的部分菌属可能具有资源-环境双重属性,例如在沼渣脱水单元相对丰度高达32.67%的假单胞菌属(Pseudomonas),该菌属中既存在少部分致病菌或条件致病菌,也具有生产聚羟基脂肪酸酯的功能菌。影响各组样品微生物群落组成结构最显著的因子是p H值,其次是总糖的含量。【结论】研究明确了典型餐厨垃圾厌氧消化处理工艺单元的微生物群落结构和多样性,并提出了优化处理工艺、强化资源利用效率的建议。  相似文献   

11.
    
Microbial population dynamics were investigated during start-up and during periods of overload conditions in anaerobic co-digesters treating municipal solid waste and sewage sludge. Changes in community structure were monitored using ribosomal RNA-based oligonucleotide probe hybridization to measure the abundance of syntrophic propionate-oxidizing bacteria (SPOB), saturated fatty acid-beta-oxidizing syntrophs (SFAS), and methanogens. These changes were linked to traditional performance parameters such as biogas production and volatile fatty acid (VFA) concentrations. Digesters with high levels of Archaea started up successfully. Methanosaeta concilii was the dominant aceticlastic methanogen in these systems. In contrast, digesters that experienced a difficult start-up period had lower levels of Archaea with proportionally more abundant Methanosarcina spp. Syntrophic propionate-oxidizing bacteria and saturated fatty acid-beta-oxidizing syntrophs were present at low levels in all digesters, and SPOB appeared to play a role in stabilizing propionate levels during start-up of one digester. Digesters with a history of poor performance tolerated a severe organic overload event better than digesters that had previously performed well. It is hypothesized that higher levels of SPOB and SFAS and their methanogenic partners in previously unstable digesters are responsible for this behavior.  相似文献   

12.
Hybrid solid anaerobic digestion batch (HSADB) is a promising technique for treating the organic fraction of municipal solid waste. The aims of the present work were to: (i) study the evolution of water extractable organic matter (WEOM) from the percolate during the process; (ii) test the possibility of using the digestate as a soil amendment. To achieve these objectives, tests were performed in a 100-l laboratory HSADB apparatus. The results showed that a few days after the beginning of the process, the water extractable organic carbon (WEOC) greatly increased due to hydrolysis of organic macromolecules (from 1010 to 11796 mg l?1 at day 8). During the process the WEOC concentration decreased and after 41 days the concentration was 920 mg l?1. The fractionation of WEOM showed that the hydrophilic fraction prevailed initially with respect to the hydrophobic fraction (Ho/Hi ratio 0.55), after which it tended to increase, reaching a Ho/Hi ratio of 1.34. This trend indicates that a series of reactions occur in the dissolved organic matter preferentially using the more labile hydrophilic fraction. Furthermore the solid digestates obtained from the HSADB process have rather good features for being classified as an organic fertilizer, except for a slight residual phytotoxicity.  相似文献   

13.
添加厨余垃圾对剩余污泥厌氧消化产沼气过程的影响   总被引:4,自引:0,他引:4  
为提高剩余污泥厌氧消化的沼气产量和甲烷含量,研究了厨余垃圾的不同添加量对剩余污泥厌氧消化性能的影响。结果表明,在35℃下,随着剩余污泥中厨余垃圾添加量的增加,厌氧消化系统中碳氮质量比(C/N)、胞外多聚物(EPS)等生理生化指标均有不同程度的改善。其中当剩余污泥与厨余垃圾质量比为2:1时,混合有机废弃物中沼气产量和甲烷含量均达到最大值,每克挥发性固体(VS)产生了156.56mL沼气,甲烷体积分数为67.52%,分别比剩余污泥单独厌氧消化时的产气量提高了5倍和1.5倍。  相似文献   

14.
Propionate is an important intermediate in the anaerobic degradation of complex organic matter to methane and carbon dioxide. The metabolism of propionate-forming and propionate-degrading bacteria is reviewed here. Propionate is formed during fermentation of polysaccharides, proteins and fats. The study of the fate of 13C-labelled compounds by nuclear magnetic resonance (NMR) spectroscopy has contributed together with other techniques to the present knowledge of the metabolic routes which lead to propionate formation from these substrates. Since propionate oxidation under methanogenic conditions is thermodynamically difficult, propionate often accumulates when the rates of its formation and degradation are unbalanced. Bacteria which are able to degrade propionate to the methanogenic substrates acetate and hydrogen can only perform this reaction when the methanogens consume acetate and hydrogen efficiently. As a consequence, propionate can only be degraded by obligatory syntrophic consortia of microorganisms. NMR techniques were used to study the degradation of propionate by defined and less defined cultures of these syntrophic consortia. Different types of side-reactions were reported, like the reductive carboxylation to butyrate and the reductive acetylation to higher fatty acids.  相似文献   

15.
Anaerobic waste digestion in Germany – Status and recent developments   总被引:1,自引:0,他引:1  
Weiland P 《Biodegradation》2000,11(6):415-421
Anaerobic treatment processes are especially suited for the utilization of wet organic wastes from agriculture and industry as well as for the organic part of source-separated household wastes. The anaerobic degradation is a very cost-effective method for treating biogenic wastes because the formed biogas can be used for heat and electricity production and the digester residues can be recycled to agriculture as a secondary fertilizer. The anaerobic technology will be used today also for the common treatment of wastes together with renewable energy crops in order to reduce the CO2-emissions according the Kyoto protocol. Various process types are applied in Germany which differ in material, reaction conditions and in the form of the used reactor systems. The widespread introduction of anaerobic digestion in Germany has shown that biogenic organic wastes are a valuable source for energy and nutrients. Anaerobic waste treatment is done today in approx. 850 biogas plants on small farm scale as well as on large industrial scale with the best beneficial and economic outcome. Due to some new environmental protection acts which promote the recycling of wastes and their utilization for renewable energy formation it can be expected that several hundreds new biogas plants will be built per year in Germany. For using the synergetic effects of a combined fermentation of wastes and energy crops new process types must be developed in order to optimize the substrate combinations and the process conditions for maximum biodegradation.  相似文献   

16.
A co-culture of bacteria responsible for the conversion of butyrate to methane and CO2 was isolated from a cattle-waste treatment plant. The non-methanogenic partner of the co-culture was Syntrophomonas wolfei and the methanogenic partner was Methanobacterium formicicum. Although butyrate degradation occurred at pH<6.0 and below 45°C, methanogenesis was observed at pH>6.5 and above 40°C.  相似文献   

17.
  总被引:7,自引:0,他引:7  
Biomass waste, including municipal solid waste (MSW), contains lignocellulosic-containing fiber components that are not readily available as substrates for anaerobic digestion due to the physical shielding of cellulose imparted by the nondigestible lignin. Consequently, a substantial portion of the potentially available carbon is not converted to methane and the incompletely digested residues from anaerobic digestion generally require additional processing prior to their return to the environment. We investigated and developed steam pressure disruption as a treatment step to render lignocellulosic-rich biomass more digestible and as a means for increasing methane energy recovery. The rapid depressurization after steam heating (240 degrees C, 5 min.) of the nondigested residues following a 30-day primary digestion of MSW caused a visible disruption of fibers and release of soluble organic components. The disrupted material, after reinoculation, provided a rapid burst in methane production at rates double those observed in the initial digestion. This secondary digestion proceeded without a lag phase in gas production, provided approximately 40% additional methane yields, and was accompanied by a approximately 40% increase in volatile solids reduction. The secondary digestate was found to be enriched in lignin and significantly depleted in cellulose and hemi-cellulose components when compared to primary digestate. Thus, steam pressure disruption treatment rendered lignocellulosic substrates readily accessible to anaerobic digestion bacteria and improved both the kinetics of biogas production and the overall methane yield from MSW. Steam pressure disruption is central to a new anaerobic digestion process approach including sequential digestion stages and integrated energy recovery, to improve process yields, provide cogenerated energy for process needs, and to provide effective reuse and recycling of waste biomass materials.  相似文献   

18.
A mathematical model was formulated to simulate the long-term performance of an anaerobic bioreactor designed to digest Korean food wastes. The system variables of various decomposition steps were built into the model, which predicts the temporal characters of solid waste, and volatile fatty acid (VFA) in the reactor, and gas production in response to various input loadings and temperatures. The predicted values of VFA and gas production were found to be in good agreement with experimental observations in batch and repeated-input systems. Finally, long-term reactor performance was simulated with respect to the seasonal temperature changes from 5°C in winter to 25°C in summer at different food waste input loadings. The simulation results provided us with information concerning the success or failure of a process during long-term operation.  相似文献   

19.
The anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) is currently an attractive treatment process with energy production in the form of biogas. Hydrolysis is the rate-limiting step for the anaerobic digestion of solid wastes. Thus, in the present study fungal enzymatic pretreatment of OFMSW was applied to enhance biogas production. Two enzyme cocktails rich on β-glucosidase were produced from submerged fermentation of Aspergillus niger on basal medium using OFMSW as carbon source and urea (Urea cocktail) and Ulva rigida as nitrogen source (Ulva cocktail). Ulva cocktail displayed an important effect on OFMSW solubilization. Therefore, an increase of reducing sugar concentration about 60% was obtained which was in correlation with chemical oxygen demand (COD) increase. The performance of enzymatic pretreatment on anaerobic digestion of OFMSW was studied by conducting biochemical methane potential tests. Results showed that the enzymatic pretreatment improved methane yield of OFMSW even at high solid concentration. High methane yield about 500 ml/g total volatile solid was obtained, which corresponds up to 68% enhancement over the control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号