首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The clone of the ciliated protozoan Paramecium caudatum has the immaturity period of about 60 fissions and the lifespan of about 600 fissions. These life cycle figures have been depicted through laboratory experiments that allow continuous cell divisions for hundreds, which never occur in nature. We here constructed the nature-mimicking model culture that alternated the log- and stationary phases to allow conjugation, and computer-simulated the age structure modifying parameters such as cell distributions to start the culture, fission rates, death rates, immaturity periods, probabilities of conjugation, proportions of transplantation and so on. The average and maximum ages in the culture after thousands of alternations were converged to 43±2 and 140±5 fissions, respectively, when parameters for the immaturity period and the maximum clonal lifespan were set at 60 and 600 fissions. This result explains why cells collected in nature are usually young and vigorous. The average and maximum ages proportionally prolonged as the immaturity period was prolonged, as reported true for species of the ciliate. These results indicate the validity of our simulation. The average and maximum ages remained unchanged when the initial condition for starting the culture was changed from two complementary mating-type cells to a population with a quadratic-function distribution, and when the fission rate at the log-phase and the death rate at the stationary phase were modified for older ages. The average and maximum ages changed slightly when either the conjugation rate or the proportion of transplantation was somewhat lowered. Although they changed considerably when such parameters as the immaturity period, conjugation rate and death rate were extremely modified, no clones with the age over 230 fissions appeared in any simulations. These results indicate the robustness of the model, which provides us with fresh insight into the structural system of the clonal lifespan of P. caudatum in nature.  相似文献   

2.
The development of sexual maturity has been studied in Tetrahymena hegewischi. Progeny lines do not typically change from immaturity to mating with all different mating types during a single test interval, but about 30% do mature abruptly. Some testers are more likely than others to participate in the earliest mating reactions of progeny lines which do not mature abruptly. Subcaryonidal vegetative pedigrees of 10 pairs from 4 crosses revealed considerable intrapair variation in the time, measured in fissions, of maturity. The average intrapair coefficient of variation was 20%. A nested ANOVA revealed significant genomic effects on the immaturity interval, but no significant cytoplasmic or caryonidal effects; 56% of the total variation was non-genomic. Growth in different environments had highly significant effects on the immaturity interval. Subclones grown at 27°C with alternate day transfers took on the average 2 to 3 times as many fissions to mature as sister subclones grown at 27°C with daily transfers. Subclones grown at 18°C or 34°C and transferred on alternate days had intermediate maturation times. The greatest range in the immaturity interval among lines of the same genotype was from 34 to 143 fissions. The development of maturity in this species involves genetic control of timing, but the genetic differences are obscured by a large amount of intraclonal variation and sensitivity to the environment.  相似文献   

3.
SYNOPSIS. The life cycles of 5 autogamous strains of Euplotes minuta are reported. Interautogamic intervals (measured as number of fissions) are quite variable among clones belonging to the same strain, while their variability is much reduced (15 fissions) among sublines of the same clone. By selecting the clone with the shortest immature period to start successive autogamous generations, it has been found that all clones undergo autogamy almost synchronously and have a very short period of immaturity at the 5th autogamous generation. Both conjugation and autogamy, however, are consistently followed by immature periods in all autogamous strains examined. Mating capacity as well as competence for autogamy are reached almost simultaneously in all clones of the strains studied with the exception of about 1/3 of the A-31 clones in which autogamy occurs significantly earlier than conjugation. The results are discussed from the genetic point of view and in relation to the sexual mechanisms operating in nature within different populations of the species.  相似文献   

4.
The organization of the 5S rRNA genes in the MACronuclear genome of Tetrahymena thermophila was examined during MAC development and replication. The 5S genes are arranged in several tandem arrays of alternating transcribed and spacer sequences in both MICronucleus and MAC. The number of EcoRI fragments bearing 5S gene clusters is similar in MIC and MAC. Most fragments occur in both the MIC and newly formed MAC genomes, a few being MIC-limited and a few MAC-limited. The same rearrangements are seen in the MACs of all four caryonides of a mating pair, and most rearrangements are seen in the newly formed MACs of different inbred strains. During replication of the MAC about half the fragments bearing 5S gene clusters disappear in different cell lines, and new fragments containing 5S genes appear. These fragments differ in size from those present in the MIC or newly formed MAC. These alterations occur in the MACs of all strains except strain B, which is more resistant to vegetative rearrangement. The losses and gains of fragments occur during clonal propagation of cell lines. The process begins by 35 fissions following conjugation, but once an alteration occurs, it is stably propagated. Clonal variation occurs with respect to which losses and gains occur, although a nonrandom distribution is seen among cell clones. We conclude that the alterations in MAC fragment size occur at two stages in the life cycle of Tetrahymena. The first stage occurs during conjugation, when the MAC develops from the MIC. The second stage becomes manifest during vegetative growth, when DNA replication occurs in the MAC and daughter molecules are distributed “amitotically” to daughter nuclei. The two-stage character to MAC alterations for the 5S genes is interpreted in terms of the two steps previously described for MAC differentiation: determination and phenotypic assortment. Possible molecular mechanisms are also discussed.  相似文献   

5.
Wild, habituated, Japanese monkeys were observed from 1975 to 1979 on Yakushima Island, Southern Japan. The monkey troops had a continuous distribution in a warm temperate forest. Demographic data on local populations was collected. The population density was 33 animals/km2. The growth rate of the studied troop was 3.0% per year. A significant correlation between home range areas (R) and troop size (P) was found (r=0.955,p<0.005), using anR-P equation,R=1.84P. One troop split into three troops through two successive fissions. Twenty-one intertroop encounters were observed. Five types of encounters were distinguished. The encounters were apparently territorial defence. Increases in birth rate and socionomic sex ratio after the fissions were prominent. The following four factors had a direct effect upon the dispersion of the troops after fission: (1) dominance relation between the fission troops; (2) social pressure of the neighbors; (3) troop's attachment to its home range; and (4) structure of the environment. The home range of Japanese monkeys is a territory, and territoriality is a population regulating mechanism which serves to reduce competition for food.  相似文献   

6.
During a field study on habituated groups of wild Nilgiri langurs (Presbytis johnii),four cases of group fission were observed which differed markedly from group changes reported in other species of the same genus. All fissions occurred in groups with more than one mature male and roughly coincided with the onset of loud call vocalization by the second mature male group member. As a result of the fission the founder group factions acquired the structure of a onemale group. The filial factions consisted of both mature males and females and occupied, at least temporarily, a part of, or an area adjacent to, the founder group. During fission, the amount of aggressive interactions between the two mature males increased. However, the majority of agonistic interactions involved ritualized threat and intimidation behavior without physical aggression. In at least three cases the two mature males involved in the fission had not joined recently but had lived in these groups for three years or more. Although the presence of all male bands and single males in the two study populations indicate that male replacement by invasive takeovers may occur, it is suggested that in Nilgiri langurs, noninvasive fissions are probably another common mechanism for the foundation and maintenance of bisexual one-male groups.  相似文献   

7.
Heterogeneity of a human T-lymphoblastoid cell line   总被引:1,自引:0,他引:1  
A human T-lymphoblastoid cell line (Jurkat) was cloned, and four resulting sublines were characterized in a variety of ways with the objective of gaining information on heterogeneity in cell lines. Within a few weeks of cloning, distinct cellular morphologies and growth patterns became apparent in the four sublines. Growth rate measurements made over 3 months did not show any significant differences between the sublines. Surface protein profiles obtained by radioimmunoprecipitation using antisera in conjunction with extracts from [35S]Met and 125I-labeled cells revealed differences between the sublines. Analysis of total cell DNA showed that one of the sublines possessed only half the chromosome complement of the other sublines and the parental line. Karyotyping confirmed this result and, in addition, demonstrated that chromosome numbers fluctuated around a mean value for each subline. Karyotypic variability became apparent within 2 months of cloning and tended to increase with time in culture. G-banding analysis showed that the analyzed cell populations contained distinctive cytogenetic aberrations. Properties of the cloned sublines were monitored over a 9-month period. One of the sublines that had shown heterogeneous morphology even after 6 weeks maintained the heterogeneity throughout this time. Another subline underwent a marked change in morphology (round to irregular) and growth habit (single cells to large clumps) with increasing time in culture. Interestingly, several alterations to surface proteins accompanied these growth changes. A third subline had relatively stable morphology and chromosome number throughout the 9-month period. The modal chromosome number was hypotetraploid for three sublines and the parent line, but was diploid for another subline. However, it was interesting that progression toward tetraploidy in this subline was apparent after almost 2 years of culturing. The results showed that the original cell line consisted of a heterogeneous assemblage of cell types, some of which were quite unstable. Some implications for research using cultured cell lines are discussed.  相似文献   

8.
《Animal behaviour》1988,36(6):1626-1645
At Polonnaruwa, Sri Lanka, four out of 29, groups of toque macaques, Macaca sinica, divided in a period of 16 years. Temporary peripheral subgroups of varying sizes and compositions preceded fission by 9–40 months. Fission crystallized within a month through an increase and stabilization of subgroup membership and permanent division. All members in the newly seceded groups had been frequent participants in pre-fission subgroups, and belonged to subordinate matrilineages. Subgroups, and hence group divisions, were initiated by cores of mutually loyal females and occurred mostly along kinship lines. In the year of fissions, the rate of change in female dominance relations was significantly greater among groups that divided than among those that did not. It is hypothesized that low-ranking females secede to form new groups when the costs, especially of intragroup competition for food resources, outweigh the benefits of group membership. Such seceding females were easily available and familiar mates for group males that had recently lost rank. Final division, therefore, resulted from a coalition of subordinate females and males acting according to their respective interests. It was triggered in this population by rapid growth of some groups to large size and by environmental stress (the reduction and fragmentation of food resources caused by drought and a cyclone), which accentuated the costs of resource competition. Male aggression, such as infanticide, which negatively affects female fitness, might also have contributed to one group fission.  相似文献   

9.
Relatively little is known about the life cycles of ascidians in temperate seas. Here, we investigated the biological cycle of the colonial ascidian Didemnum fulgens, a dominant species in some shallow localities of the NW Mediterranean Sea. Growth rates and frequencies of fission/fusion events were calculated over a period of 13 months, and the reproductive cycle determined after 32 months of observation. For analyses of reproduction, zooids were dissected in the laboratory and classified into five reproductive categories; these data were used to calculate a maturity index. For growth analyses, underwater photographs of marked colonies were used to estimate the surface area of D. fulgens colonies, calculate monthly growth rates, and document fusion and fission events. Clear seasonal patterns in reproduction and growth were observed, with distinct periods of investment into each function. Gonad maturation started in winter and larval release occurred in early summer, just before maximal sea temperatures were reached. After reproducing, colonies shrank and aestivated during the warmer summer months. Growth occurred during the cooler months, with maximal and minimal growth rates observed in winter and summer, respectively. Fusions and fissions occurred year‐round, although fissions were more frequent in fall (coincident with high growth rates) and fusions in spring (coincident with reproduction). These results add to the mounting evidence that ascidian life cycles in temperate seas are characterized by a trade‐off between investment in reproduction and growth, triggered by seasonal temperature shifts and constrained by resource availability during summer.  相似文献   

10.
Restriction fragment length polymorphisms for somatotropic genes were tested for associations with body weight and postweaning growth rate in mice. Polymorphisms for growth hormone (GH) and insulin-like growth factor 2 (IGF-2) genes were identified in stock population lines which had been subjected to long-term selection for high 42-day body weight (H lines) or randomly mated (FP and C lines). Two F2 populations of mice (5F2 and MF2) were generated from crosses between a single H line of mice and two unselected control lines and subsequently, two divergently weight selected sublines were generated from each F2 population. The GHh allele which had originally been fixed in three of four H lines and absent from all FP and C lines was found to have a significant (P less than 0.01) effect on 42-day weight and postweaning growth rate in the F2 populations. However, GHh was associated with lower 42-day weight in the F2 populations, suggesting that the positive association between GHh and weight in the stock population was unique to the high weight selected genetic background of those lines. In agreement with this, the frequency of GHh increased in sublines selected for high 42-day weight and decreased in sublines selected for low 42-day weight. The IGF-2H5 allele was associated with higher weights in a sex-dependent manner in 5F2. In the high selected subline derived from 5F2, a significant increase in the frequency of IGF-2H5 was observed. Therefore this allele, in contrast to GHh, appears to be a positive indicator of growth irrespective of genetic background.  相似文献   

11.
ABSTRACT. Dileptids are haptorid ciliates with a conspicuous proboscis belonging to the oral apparatus and carrying a complex, unique ciliary pattern. We studied development of body shape, ciliary pattern, and nuclear apparatus during and after binary fission of Dileptus terrenus using protargol impregnation. Additional data were obtained from a related species, Pseudomonilicaryon brachyproboscis . Division is homothetogenic and occurs in freely motile condition. The macronucleus is homomeric and condenses to a globular mass in mid-dividers. The proboscis appears in late mid-dividers as a small convexity in the opisthe's dorsal brush area and maturates post-divisionally. The oral and dorsal brush structures develop by three rounds of basal body proliferation. The first round generates minute anarchic fields that will become circumoral kinetofragments, while the second round produces the perioral kinety on the right and the preoral kineties on the dorsal opisthe's side. The dorsal brush is formed later by a third round of basal body production. The formation of various Spathidium -like body shapes and ciliary patterns during ontogenesis and conjugation of Dileptus shows a close relationship between spathidiids and dileptids. On the other hand, the peculiarities of the dileptid morphology and ontogenesis indicate a long, independent evolution.  相似文献   

12.
The macronucleus of Paramecium caudatum controls most cellular activities, including sexual immaturity after conjugation. Exconjugant cells have two macronuclear forms: (1) fragments of the maternal macronucleus, and (2) the new macronuclei that develop from the division products of a fertilization micronucleus. The fragments are distributed into daughter cells without nuclear division and persist for at least eight cell cycles after conjugation. Conjugation between heterokaryons revealed that the fragmented maternal macronuclei continued to express genetic information for up to eight cell cycles. When the newly developed macronucleus was removed artificially within four cell cycles after conjugation, the clones regenerated the macronuclear fragments (macronuclear regeneration; MR) and showed mating reactivity, because they were sexually mature. However, when the new macronucleus was removed during later stages, many MR clones did not show mating reactivity. In some extreme cases, immaturity continued for more than 50 fissions after conjugation, as seen with normal clones that had new macronuclei derived from a fertilization micronucleus. These results indicate that the immaturity determined by the new macronucleus is not annulled by the regenerated maternal macronucleus. Mature macronuclear fragments may be "reprogrammed" in the presence of the new macronucleus, resulting in their expression of "immaturity."  相似文献   

13.
14.
SYNOPSIS. Kinetosomal changes, as indicative of cytoplasmic reorganization in binary fission and during and after conjugation, were followed in a zoochlorellae-bearing species of Euplotes. The preconjugant peristome, designated the first generation peristome, breaks down partially after the conjugants have paired; the basal section, comprising the shorter adoral membranelles and the undulating, membrane, is resorbed. A new peristome, the second generation peristome, arises as a small pit near the left ventral margin, in midline, at the time when the micronuclei are in the first meiotic prophase. By the time of the second meiotic division a single set of new cirri, the second generation cirri, has formed in each conjugant. This second set is not perfect, lacking one of the frontals. Neither the second generation peristome nor cirri develop very far, or migrate, until after separation of the conjugants. Then the new peristome replaces the old one and the new cirri become functional. However, the new peristome lacks an undulating membrane and does not complete its development, bearing only a fraction of the normal number of membranelles. At its posterior termination, at the time of condensation of the macronuclear anlage, another peristome, the third generation peristome, is formed and develops as a granular, and later striated, invagination extending posteriorly. It appears to integrate with its predecessor and, as its constituent membranelles develop, a third generation single set of new cirri arises. These replace the imperfect previous set, all of the cirri being represented. In anticipation of the first postconjugant fission, all of the cirral apparatus is discarded again and two new sets (fourth generation cirri) originate; the old (combination second and third generation) peristome is retained by the proter while a new one is provided for the opisthe. It is evident, therefore, that a rather far-reaching cytoplasmic reorganization accompanies the nuclear changes of conjugation, seeming, for the most part, to follow the nuclear changes. The old macronuclear fragments have been found not to fuse with the macronuclear anlage.  相似文献   

15.
The genus Sorex is one of the most successful genera of Eulipotyphla. Species of this genus are characterized by a striking chromosome variability including XY1Y2 sex chromosome systems and exceptional chromosomal polymorphisms within and between populations. To study chromosomal evolution of the genus in detail, we performed cross-species chromosome painting of 7 Sorex species with S. granarius and S. araneus whole-chromosome probes and found that the tundra shrew S. tundrensis has the most rearranged karyotype among these. We reconstructed robust phylogeny of the genus Sorex based on revealed conserved chromosomal segments and syntenic associations. About 16 rearrangements led to formation of 2 major Palearctic groups after their divergence from the common ancestor: the S. araneus group (10 fusions and 1 fission) and the S. minutus group (5 fusions). Further chromosomal evolution of the 12 species inside the groups, including 5 previously investigated species, was accompanied by multiple reshuffling events: 39 fusions, 20 centromere shifts and 10 fissions. The rate of chromosomal exchanges upon formation of the genus was close to the average rate for eutherians, but increased during recent (about 6-3 million years ago) speciation within Sorex. We propose that a plausible ancestral Sorex karyotype consists of 56 elements. It underwent 20 chromosome rearrangements from the boreoeutherian ancestor, with 14 chromosomes retaining the conserved state. The set of genus-specific chromosome signatures was drawn from the human (HSA)-shrew comparative map (HSA3/12/22, 8/19/3/21, 2/13, 3/18, 11/17, 12/15 and 1/12/22). The syntenic association HSA4/20, that was previously proposed as a common trait of all Eulipotyphla species, is shown here to be an apomorphic trait of S. araneus.  相似文献   

16.
Following conjugation in ciliates, the usual fate of the old pre-conjugant macronucleus is resorption. In some species, however, old macronuclei, or their fragments, have the ability to reform functional vegetative macronuclei when new macronuclear anlagen are defective. The present work on Euplotes shows that if anlagen are allowed to carry out their essential roles in early exconjugant development, including influence on cortical reorganization such that feeding can resume, they can then be permanently damaged by UV-microbeam irradiation and regeneration of old macronuclear fragments can occur. E. aediculatus exconjugants were anlage-irradiated at 40–60 hr of development and the irradiated cells cultured individually and fed. Squashes revealed enlargement and anteriorward migration of the persistent (posterior) macronuclear fragments. The first post-conjugant fission of such cells was delayed (times ranged 6–43 days) and did not seem to involve the damaged anlagen, which remained rudimentary, did not divide along with the cells, and were subsequently resorbed. It appeared that cell fission was supported by the fragments of the old macronuclei, which either divided or partitioned themselves between the two daughter cells. Mating tests performed on early clones derived from irradiated exconjugants revealed ample conjugation competence; intraclonal conjugation in such clones was also apparent. The absence of the immature period seen in normal exconjugants provides further evidence that the clones arose from cells with regenerated macronuclei.  相似文献   

17.
Socioecological theory proposes that the flexibility in grouping patterns afforded by fission–fusion dynamics allows animals to cope with spatiotemporal variability in food abundance. We investigate the influence of fruit tree abundance and foraging environment heterogeneity on fission–fusion dynamics in a group of spider monkeys (Ateles geoffroyi) in the Yucatan peninsula, Mexico. We collected 1300 h of behavioral data and 23 samples of biweekly ecological data from August 2009 to July 2010. We measured fission–fusion dynamics through the temporal variation in the size and composition of subgroups, the spatial dispersion within and between subgroups, and the frequency of fissions and fusions. We measured habitat-wide food abundance of preferred species, including two that differ greatly in their relative abundance: Brosimum alicastrum (a hyperabundant resource) and Ficus spp. (a not so abundant resource but often represented by large trees). We evaluated the foraging environment heterogeneity through the variance in the number of trees with fruit between species. Our results show that, although habitat-wide food abundance is important, the availability of key resources strongly influences the spider monkeys’ fission–fusion dynamics. When there was a high abundance of fruit of Brosimum, subgroups tended to be more stable, smaller, and mixed sex, and their members remained close. In contrast, when Brosimum trees with fruit were scarce, females often formed large, more fluid and dispersed subgroups. Foraging environment heterogeneity had a positive effect on within-subgroup spatial dispersion and rates of fission and fusion. The complex relationships we have uncovered suggest that the flexibility afforded by fission–fusion dynamics is an adaptation to highly variable foraging environments.  相似文献   

18.
Glutathione metabolism was monitored in proliferating intact, perfused MCF-7 breast cancer cells by (13)C NMR spectroscopy. Label incorporation from [3,3'-(13)C(2)]cystine in the perfusate into intracellular glutathione was monitored in native wild-type MCF-7 (MCF-7wt) cells and sublines resistant to doxorubicin (MCF-7dox) and 4-hydroperoxycyclophosphamide (MCF-7hc). Pulse-chase studies showed non-linear rates of isotope label uptake and washout. Fitting these data to an exponential model of glutathione metabolism allowed calculation of rate constants for glutathione metabolism in these cell lines. Comparison of these rate constants showed glutathione metabolism was increased in both drug-resistant lines. No significant difference was observed between these results for cells growing in three dimensions and results for cells cultured in monolayer.  相似文献   

19.
Transformation by microinjection of macronucleoplasm in Paramecium caudatum was investigated. Macronucleoplasm with three genetic markers (behavior, trichocyst, and mating type) was injected into the macronucleus. To facilitate microinjection, in most cases, paramecia were immobilized in a gelatin (7.5%) solution. The injected cells began to express a dominant gene (cnrA+ or cnrB+) of the donor 9–24 hr after injection. Expression did not require cell division suggesting injected macronucleoplasm was capable of expressing a phenotype. The amount of injected macronucleoplasm appears to correlate with the frequency of successful expression but not to correlate with the time required for expression. After a number of fissions, the injected cells produced clones which had cells expressing the phenotype of the donor. This suggests that injected macronucleoplasm was replicated and expressed in the recipient cell lines. The transformed clones were classified into two groups. In one group, transformation was stable. All cell lines derived from the injected cells expressed a phenotype similar to the heterozygote of donor and recipient cells. In the other group, transformation was unstable. During the first five to seven fissions after injection, at each division, cells produced one daughter cell which later reverted to the recipient phenotype. After this unstable period, cells no longer produced the recipient phenotype but produced the donor phenotype exclusively. Donor and recipient phenotypes were, thus, segregated in different cell lines. Observation of genetic markers and analysis by computer simulation shed light on the mode of transmission of injected macronucleoplasm. In stable transformation, injected macronucleoplasm appears to be distributed equally to daughter cells. In unstable transformation, injected macronucleoplasm is distributed only to one of the daughter cells at every division until about the fifth to seventh fission after injection and then begins to assort equally to daughter cells. The cell cycle stage at injection may influence the mode of transformation. Interspecific microinjection of macronucleoplasm from P. multimicronucleatum and P. tetraurelia to P. caudatum. resulted in the expression of foreign genes in P. caudatum. In one case, injection of macronucleoplasm of P. tetraurelia produced a stable transformant indicating replication of foreign macronucleoplasm in P. caudatum. This work reveals the mode of transformation by injected macronucleoplasm and shows the possibility of transformation among Paramecium species, which is significant in the study of the conservation of gene products and the mechanism of gene expression in different species. © 1992 Wiley-Liss, Inc.  相似文献   

20.
Conjugation in Tetrahymena is a developmental system which results in a synchronized reorganization of the genetic material in both mates of a pair. Mass cultures of T. thermophila are easily induced to conjugate simultaneously, thus conjugation is amenable to cytological, genetical and biochemical studies. We investigated the changes in newly synthesized whole-cell proteins as a function of time after mixing of mating-competent cells, using [35S]methionine pulse-labelling, one-dimensional polyacrylamide gel electrophoresis, and autoradiography. Concomitantly, the percentage of pairs and the cytological events were followed. Synthesis of at least ten protein bands with molecular weights larger than 50 kD are stimulated during the 5 h interval between mixing of the cells and meiosis of the gametic nuclei, whereas only minor protein synthesis takes place in the following 3 h. Two bands in particular are stimulated: one (81 kD, actD-insensitive) is synthesized until cells pair while the other (86 kD, actD-sensitive) is found between pairing and meiosis only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号