首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular search for the homologues of the mammalian proteins in the unicellular eukaryote Paramecium involved in endocytosis and membrane trafficking is discussed. We cloned and sequenced the gene fragments encoding the following components participating in endosome formation, sorting and maturation of the proprotein precursors, respectively, dynamin 2, Rab7 and furin. There is a proof that all these genes are expressed in this unicellular organism. The function of the identified immunoanalogues of the above described components of Paramecium endocytic machinery as well as a high degree of sequence homology to the respective human counterparts points to the evolutionary conservancy of these pathways.  相似文献   

3.
Intraflagellar transport (IFT) is a microtubule based system that supports the assembly and maintenance of cilia. Genetic and biochemical studies have identified two distinct complexes containing multiple proteins that are part of the IFT machinery. In this study we prepared mouse pituitary cells that expressed an epitope-tagged IFT protein and immuno-purified the IFT B complex from these cells. Mass spectrometry analysis of the isolated complex led to identification of a number of well known components of the IFT B complex. In addition, peptides corresponding to mouse tetratricopeptide repeat proteins, TTC30A1, TTC30A2 and TTC30B were identified. The mouse Ttc30A1, Ttc30A2, Ttc30B genes are orthologs of Caenorhabditis elegans dyf-1, which is required for assembly of the distal segment of the cilia. We used co-immunoprecipitation studies to provide evidence that, TTC30A1, TTC30A2 or TTC30B can be incorporated into a complex with a known IFT B protein, IFT52. We also found that TTC30B can interact with mouse KIF17, a kinesin which participates in IFT. In vitro expression in a cell-free system followed by co-immunoprecipitation also provided evidence that TTC30B can directly interact with several different IFT B complex proteins. The findings support the view that mouse TTC30A1, TTC30A2 and TTC30B can contribute to the IFT B complex, likely through interactions with multiple IFT proteins and also suggest a possible link to the molecular motor, KIF17 to support transport of cargo during IFT.  相似文献   

4.
Intraflagellar transport (IFT), which is the bidirectional movement of particles within flagella, is required for flagellar assembly. IFT particles are composed of approximately 16 proteins, which are organized into complexes A and B. We have cloned Chlamydomonas reinhardtii and mouse IFT46, and show that IFT46 is a highly conserved complex B protein in both organisms. A C. reinhardtii insertional mutant null for IFT46 has short, paralyzed flagella lacking dynein arms and with central pair defects. The mutant has greatly reduced levels of most complex B proteins, indicating that IFT46 is necessary for complex B stability. A partial suppressor mutation restores flagellar length to the ift46 mutant. IFT46 is still absent, but levels of the other IFT particle proteins are largely restored, indicating that complex B is stabilized in the suppressed strain. Axonemal ultrastructure is restored, except that the outer arms are still missing, although outer arm subunits are present in the cytoplasm. Thus, IFT46 is specifically required for transporting outer arms into the flagellum.  相似文献   

5.
Chlamydomonas reinhardtii intraflagellar transport (IFT) particles can be biochemically resolved into two smaller assemblies, complexes A and B, that contain up to six and 15 protein subunits, respectively. We provide here the proteomic and immunological analyses that verify the identity of all six Chlamydomonas A proteins. Using sucrose density gradient centrifugation and antibody pulldowns, we show that all six A subunits are associated in a 16 S complex in both the cell bodies and flagella. A significant fraction of the cell body IFT43, however, exhibits a much slower sedimentation of ~2 S and is not associated with the IFT A complex. To identify interactions between the six A proteins, we combined exhaustive yeast-based two-hybrid analysis, heterologous recombinant protein expression in Escherichia coli, and analysis of the newly identified complex A mutants, ift121 and ift122. We show that IFT121 and IFT43 interact directly and provide evidence for additional interactions between IFT121 and IFT139, IFT121 and IFT122, IFT140 and IFT122, and IFT140 and IFT144. The mutant analysis further allows us to propose that a subset of complex A proteins, IFT144/140/122, can form a stable 12 S subcomplex that we refer to as the IFT A core. Based on these results, we propose a model for the spatial arrangement of the six IFT A components.  相似文献   

6.
Intraflagellar transport (IFT) provides a mechanism for the transport of cilium-specific proteins, but the mechanisms for linkage of cargo and IFT proteins have not been identified. Using the sensory outer segments (OS) of photoreceptors, which are derived from sensory cilia, we have identified IFT–cargo complexes containing IFT proteins, kinesin 2 family proteins, two photoreceptor-specific membrane proteins, guanylyl cyclase 1 (GC1, Gucy2e) and rhodopsin (RHO), and the chaperones, mammalian relative of DNAJ, DnajB6 (MRJ), and HSC70 (Hspa8). Analysis of these complexes leads to a model in which MRJ through its binding to IFT88 and GC1 plays a critical role in formation or stabilization of the IFT–cargo complexes. Consistent with the function of MRJ in the activation of HSC70 ATPase activity, Mg-ATP enhances the co-IP of GC1, RHO, and MRJ with IFT proteins. Furthermore, RNAi knockdown of MRJ in IMCD3 cells expressing GC1-green fluorescent protein (GFP) reduces cilium membrane targeting of GC1-GFP without apparent effect on cilium elongation.  相似文献   

7.
Bone morphogenetic proteins (BMPs) act as multifunctional regulators in morphogenesis during development. In particular they play a determinant role in the formation of cartilage molds and their replacement by bone during endochondral ossification. In cell culture, BMP-2 favors chondrogenic expression and promotes hypertrophic maturation of chondrocytes. In mouse chondrocytes we have identified a BMP-2-sensitive gene encoding a protein of 301 amino acids. This protein, named mIFT46, is the mouse ortholog of recently identified Caenorhabditis elegans and Chlamydomonas reinhardtii intraflagellar transport (IFT) proteins. After generation of a polyclonal antibody against mIFT46, we showed for the first time that the endogenous protein is located in the primary cilium of chondrocytes. We also found that mIFT46 is preferentially expressed in early hypertrophic chondrocytes located in the growth plate. Additionally, mIFT46 knockdown by small interfering RNA oligonucleotides in cultured chondrocytes specifically stimulated the expression of several genes related to skeletogenesis. Furthermore, Northern blotting analysis indicated that mIFT46 is also expressed before chondrogenesis in embryonic mouse development, suggesting that the role of mIFT46 might not be restricted to cartilage. To explore the role of IFT46 during early development, we injected antisense morpholino oligonucleotides in Danio rerio embryos to reduce zebrafish IFT46 protein (zIFT46) synthesis. Dramatic defects in embryonic development such as a dorsalization and a tail duplication were observed. Thus our results taken together indicate that the ciliary protein IFT46 has a specific function in chondrocytes and is also essential for normal development of vertebrates.  相似文献   

8.
Intraflagellar transport (IFT) proteins are well established as conserved mediators of flagellum/cilium assembly and disassembly. However, data has begun to accumulate in support of IFT protein involvement in other processes elsewhere in the cell. Here, we used synchronous cultures of Chlamydomonas to investigate the temporal patterns of accumulation and localization of IFT proteins during the cell cycle. Their mRNAs showed periodic expression that peaked during S and M phase (S/M). Unlike most proteins that are synthesized continuously during G1 phase, IFT27 and IFT46 levels were found to increase only during S/M phase. During cell division, IFT27, IFT46, IFT72, and IFT139 re-localized from the flagella and basal bodies to the cleavage furrow. IFT27 was further shown to be associated with membrane vesicles in this region. This localization pattern suggests a role for IFT in cell division.  相似文献   

9.
EA Richey  H Qin 《PloS one》2012,7(8):e43118
Intraflagellar transport (IFT), the key mechanism for ciliogenesis, involves large protein particles moving bi-directionally along the entire ciliary length. IFT particles contain two large protein complexes, A and B, which are constructed with proteins in a core and several peripheral proteins. Prior studies have shown that in Chlamydomonas reinhardtii, IFT46, IFT52, and IFT88 directly interact with each other and are in a subcomplex of the IFT B core. However, ift46, bld1, and ift88 mutants differ in phenotype as ift46 mutants are able to form short flagella, while the other two lack flagella completely. In this study, we investigated the functional differences of these individual IFT proteins contributing to complex B assembly, stability, and basal body localization. We found that complex B is completely disrupted in bld1 mutant, indicating an essential role of IFT52 for complex B core assembly. Ift46 mutant cells are capable of assembling a relatively intact complex B, but such complex is highly unstable and prone to degradation. In contrast, in ift88 mutant cells the complex B core still assembles and remains stable, but the peripheral proteins no longer attach to the B core. Moreover, in ift88 mutant cells, while complex A and the anterograde IFT motor FLA10 are localized normally to the transition fibers, complex B proteins instead are accumulated at the proximal ends of the basal bodies. In addition, in bld2 mutant, the IFT complex B proteins still localize to the proximal ends of defective centrioles which completely lack transition fibers. Taken together, these results revealed a step-wise assembly process for complex B, and showed that the complex first localizes to the proximal end of the centrioles and then translocates onto the transition fibers via an IFT88-dependent mechanism.  相似文献   

10.
Intraflagellar transport (IFT) is the bidirectional movement of protein complexes required for cilia and flagella formation. We investigated IFT by analyzing nine conventional IFT genes and five novel putative IFT genes (PIFT) in Trypanosoma brucei that maintain its existing flagellum while assembling a new flagellum. Immunostaining against IFT172 or expression of tagged IFT20 or green fluorescent protein GFP::IFT52 revealed the presence of IFT proteins along the axoneme and at the basal body and probasal body regions of both old and new flagella. IFT particles were detected by electron microscopy and exhibited a strict localization to axonemal microtubules 3–4 and 7–8, suggesting the existence of specific IFT tracks. Rapid (>3 μm/s) bidirectional intraflagellar movement of GFP::IFT52 was observed in old and new flagella. RNA interference silencing demonstrated that all individual IFT and PIFT genes are essential for new flagellum construction but the old flagellum remained present. Inhibition of IFTB proteins completely blocked axoneme construction. Absence of IFTA proteins (IFT122 and IFT140) led to formation of short flagella filled with IFT172, indicative of defects in retrograde transport. Two PIFT proteins turned out to be required for retrograde transport and three for anterograde transport. Finally, flagellum membrane elongation continues despite the absence of axonemal microtubules in all IFT/PIFT mutant.  相似文献   

11.
In mammalian tissues, connexin 43 (Cx43) is the most prominent member of the connexin family. In a single lipid bilayer, six connexin subunits assemble into a hemichannel (connexon). Direct communication of apposing cells is realized by two adjacent hemichannels, which can form gap junction channels. Here, we established an expression system in Pichia pastoris to recombinantly produce and purify Cx43 as well as Cx43 fused to green fluorescent protein (GFP). Proteins were isolated from crude cell membrane fractions via affinity chromatography. Cx43 and Cx43-GFP hemichannels were reconstituted in giant unilamellar vesicles as proven by fluorescence microscopy, and their electrophysiological behavior was analyzed on the single channel level by planar patch clamping. Cx43 and Cx43-GFP both showed an ohmic behavior and a voltage-dependent open probability. Cx43 hemichannels exhibited one major mean conductance of 224 ± 26 picosiemens (pS). In addition, a subconductance state at 124 ± 5 pS was identified. In contrast, the analysis of Cx43-GFP single channels revealed 10 distinct conductance states in the range of 15 to 250 pS, with a larger open probability at 0 mV as compared with Cx43, which suggests that intermolecular interactions between the GFP molecules alter the electrophysiology of the protein.  相似文献   

12.
The secretory granules (trichocysts) of Paramecium are characterized by a highly constrained shape that reflects the crystalline organization of their protein contents. Yet the crystalline trichocyst content is composed not of a single protein but of a family of related polypeptides that derive from a family of precursors by protein processing. In this paper we show that a multigene family, of unusually large size for a unicellular organism, codes for these proteins. The family is organized in subfamilies; each subfamily codes for proteins with different primary structures, but within the subfamilies several genes code for nearly identical proteins. For one subfamily, we have obtained direct evidence that the different members are coexpressed. The three subfamilies we have characterized are located on different macronuclear chromosomes. Typical 23-29 nucleotide Paramecium introns are found in one of the regions studied and the intron sequences are more variable than the surrounding coding sequences, providing gene-specific markers. We suggest that this multigene family may have evolved to assure a microheterogeneity of structural proteins necessary for morphogenesis of a complex secretory granule core with a constrained shape and dynamic properties: genetic analysis has shown that correct assembly of the crystalline core is necessary for trichocyst function.  相似文献   

13.
Cilia are highly conserved in most eukaryotes and are regarded as an important organelle for motility and sensation in various species. Cilia are microscopic, hair-like cytoskeletal structures that protrude from the cell surface. The major focus in studies of cilia has been concentrated on the ciliary dysfunction in vertebrates that causes multisymptomatic diseases, which together are referred to as ciliopathies. To date, the understanding of ciliopathies has largely depended on the study of ciliary structure and function in different animal models. Zinc finger MYND-type containing 10 (ZMYND10) is a ciliary protein that was recently found to be mutated in patients with primary ciliary dyskinesia (PCD). In Paramecium tetraurelia, we identified two ZMYND10 genes, arising from a whole-genome duplication. Using RNAi, we found that the depletion of ZMYND10 in P. tetraurelia causes severe ciliary defects, thus provoking swimming dysfunction and lethality. Moreover, we found that the absence of ZMYND10 caused the abnormal localization of the intraflagellar transport (IFT) protein IFT43 along cilia. These results suggest that ZMYND10 is involved in the regulation of ciliary function and IFT, which may contribute to the study of PCD pathogenesis.  相似文献   

14.
Formation of flagellar outer dynein arms in Chlamydomonas reinhardtii requires the ODA16 protein at a previously uncharacterized assembly step. Here, we show that dynein extracted from wild-type axonemes can rebind to oda16 axonemes in vitro, and dynein in oda16 cytoplasmic extracts can bind to docking sites on pf28 (oda) axonemes, which is consistent with a role for ODA16 in dynein transport, rather than subunit preassembly or binding site formation. ODA16 localization resembles that seen for intraflagellar transport (IFT) proteins, and flagellar abundance of ODA16 depends on IFT. Yeast two-hybrid analysis with mammalian homologues identified an IFT complex B subunit, IFT46, as a directly interacting partner of ODA16. Interaction between Chlamydomonas ODA16 and IFT46 was confirmed through in vitro pull-down assays and coimmunoprecipitation from flagellar extracts. ODA16 appears to function as a cargo-specific adaptor between IFT particles and outer row dynein needed for efficient dynein transport into the flagellar compartment.  相似文献   

15.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gapjunctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

16.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gap junctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

17.
18.
Sensory cilium biogenesis within Caenorhabditis elegans neurons depends on the kinesin-2-dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their motility in wild-type and bbs (Bardet-Biedl syndrome) mutants, IFT proteins were classified into groups with similar transport profiles that we refer to as "modules." We also analyzed the distribution and transport of fluorescent IFT particles in multiple known ciliary mutants and 49 new ciliary mutants. Most of the latter mutants were snip-SNP mapped and one, namely dyf-14(ks69), was cloned and found to encode a conserved protein essential for ciliogenesis. The products of these ciliogenesis genes could also be assigned to the aforementioned set of modules or to specific aspects of ciliogenesis, based on IFT particle dynamics and ciliary mutant phenotypes. Although binding assays would be required to confirm direct physical interactions, the results are consistent with the hypothesis that the C. elegans IFT machinery has a modular design, consisting of modules IFT-subcomplex A, IFT-subcomplex B, and a BBS protein complex, in addition to motor and cargo modules, with each module contributing to distinct functional aspects of IFT or ciliogenesis.  相似文献   

19.
Cytoskeletal elements may be important in connexin transport to the cell surface, cell surface gap junction plaque formation and/or gap junction internalization. In this study, fluorescence recovery after photobleaching was used to examine the role of microfilaments and microtubules in the recruitment and coalescence of green fluorescent protein-tagged Cx43 (Cx43-GFP) or yellow fluorescent tagged-Cx26 (Cx26-YFP) into gap junctions in NRK cells. In untreated cells, both Cx26-YFP and Cx43-GFP were recruited into gap junctions within photobleached areas of cell-cell contact within 2 hrs. However, disruption of microfilaments with cytochalasin B inhibited the recruitment and assembly of both Cx26-YFP and Cx43-GFP into gap junctions within photobleached areas. Surprisingly, disruption of microtubules with nocodazole inhibited the recruitment of Cx43-GFP into gap junctions but had limited effect on the transport and clustering of Cx26-YFP into gapjunctions within the photobleached regions of cell-cell contact. These results suggest that the recruitment of Cx43-GFP and Cx26-YFP to the cell surface or their lateral clustering into gap junctions plaques is dependent in part on the presence of intact actin microfilaments while Cx43-GFP was more dependent on intact microtubules than Cx26-YFP.  相似文献   

20.
Chan CW  Saimi Y  Kung C 《Gene》1999,231(1-2):21-32
Ca2+/calmodulin (CaM) regulates various physiological processes in a wide variety of organisms, metazoa and protists alike. To better understand Ca2+/CaM-dependent processes, particularly those with membrane-associated components, we studied Ca2+/CaM-binding membrane proteins in Paramecium tetraurelia, a unicellular model system. A CaM-binding protein, PCM1 (Paramecium CaM-binding membrane-bound protein), from a detergent-solubilized ciliary membrane fraction was identified and purified through Ca2+-dependent CaM-affinity chromatography. PCM1 has an apparent molecular mass of approx. 65kDa. It binds radiolabeled CaM in blot overlay assays and binds to CaM-affinity columns, both only in the presence of 10 microM or higher Ca2+. Three peptide sequences from PCM1 were obtained, and polymerase chain reaction (PCR) and Southern hybridization experiments were designed accordingly, leading to a partial cDNA clone for PCM1 and the discovery of three homologs: PCM2, PCM3 and PCM4. Amino acid sequences predicted by the full-length coding sequence for PCM3 and partial genes for PCM1, PCM2 and PCM4 are very similar (approx. 85% amino-acid identities). Their sequences indicate that they are hitherto novel proteins with beta/gamma-crystallin domains, cysteine-rich regions and potential CaM-binding domains. These protein motifs are suggested to mediate protein-protein interaction important for Ca2+/CaM signal transduction event(s) through the PCM family of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号