首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
羊毛硫细菌素及其应用   总被引:10,自引:0,他引:10  
那淑敏  还连栋   《微生物学通报》1999,26(6):430-433
由基因编码、在核糖体上合成的抗菌多肽广泛分布于自然界中。人、动物、昆虫、植物和微生物都可以产生。这些抗菌多肽在食品防腐保鲜以及在药物治疗和医治肿瘤、癌症方面的潜力引起人们极大的关注[1]。近10年来,原核生物和真核生物产生的抗菌多肽成为人们研究的热点,并取得飞速进展[1-4]。本文将主要介绍革兰氏阳性细菌产生的羊毛硫细菌素的结构、性质、生物合成,作用机制及应用。1什么叫羊毛硫细菌素由细菌基因编码、在核糖体上合成的抗菌多肽叫作细菌素。它是由某些细菌通过核糖体合成机制产生的一类具有抑菌生物活性的多肽…  相似文献   

2.
SGNH水解酶家族是一类在四个保守序列区上具有严格保守催化残基Ser、Gly、Asn和His的水解酶,该家族水解酶广泛存在于真核生物和原核生物中。细菌来源的SGNH水解酶家族具有来源广泛、功能多样且催化机制独特等特点,在细菌致病性、碳源代谢和天然产物合成等方面发挥重要生物学功能,在医药、化工、生物燃料和环境修复等领域具有广泛的应用潜力。本文从氨基酸序列、蛋白结构特征、酶学催化机制、细菌生理功能及应用领域等方面对细菌来源的SGNH水解酶家族成员进行综述。  相似文献   

3.
ZnO和CuO纳米颗粒(nanoparticles, NPs)在研究、医学和工业等领域的广泛使用,已引起人们对其生物安全性的忧虑。相关学者已在污水处理系统中检测到ZnO NPs和CuO NPs,由于其独特的理化性质,低含量NPs就对微生物群落结构和生长代谢产生毒性,进而影响污水脱氮的稳定运行。本文综述了ZnO NPs和CuO NPs对生物脱氮系统中相关功能细菌的毒性及机制,并总结了通过调节水环境因素(如pH值、离子强度、离子类型和天然有机物等)缓解ZnO NPs和CuO NPs的细胞毒性,以期为今后缓解和应急调控金属纳米颗粒(metal oxide nanoparticles, MONPs)对污水处理系统的冲击提供理论基础和支撑。  相似文献   

4.
非蛋白氨基酸的生物合成及其生物学作用   总被引:3,自引:0,他引:3  
解释了蛋白氨基酸和非蛋白氨基酸,并着重论述了非蛋白氨基酸的生物合成及其生物学作用。非蛋白氨基酸的生物合成主要通过基本氨基酸合成后的修饰、代谢及消旋作用产生,其生物学作用主要表现在能合成其他含氮物质、储藏氮和运输氮、储能、组成细菌细胞壁、毒性作用及药物作用等方面。  相似文献   

5.
萜类化合物是一大类小分子天然产物,在生物体内扮演重要的角色。植物和真菌中萜类化合物的生物合成已被广泛研究,但是在真核生物中克隆或改造萜类化合物生物合成途径还有较大难度。许多细菌同样可以产生萜类化合物。在过去十多年间细菌萜类合酶的研究进展为我们对萜类化合物生物合成的理解做出了显著的贡献。这里我们主要关注细菌中合成的倍半萜化合物,概述其化学结构、倍半萜合酶对法尼基焦磷酸环化的机制、后修饰酶特别是氧化还原酶所参与的后修饰、代谢调控以及合成途径中尚未解决的问题等。  相似文献   

6.
<正>细菌或许是解决可持续能源问题的关键研究人员对大肠杆菌的脂肪酸路径进行操纵,并用该生物自身反应机制以一种可再生的方式生成丙烷。虽然最初产率低,但能够通过识别和添加必要的生物化学成分以助推该生物合成反应,从而使得特定的大肠杆菌菌种能够合成相当大数量的丙烷。重要的是,这一丙烷生成路径能在有氧存在的情况  相似文献   

7.
气囊是在水生细菌中广泛存在的一种具有刚性中空蛋白结构的特殊细胞器,不仅为水生细菌提供浮力,还对其在不利环境或应激条件下的生存至关重要。近期研究发现在其他非水生细菌如沙雷氏菌和链霉菌中也存在气囊结构,而且表现出不同的生理功能。来源于不同种属细菌的气囊生物合成基因簇具有各自鲜明的特征,其生物合成和调控机制也有所不同。本综述将介绍和总结不同细菌中气囊的基本生理功能和生物合成及调控机制,以及气囊的生物技术应用,并对气囊在链霉菌中的生物合成研究以及人工重组气囊的潜在应用进行展望。  相似文献   

8.
金属型纳米颗粒对植物的生态毒理效应研究进展   总被引:2,自引:0,他引:2  
纳米技术的高速发展和人工纳米颗粒(NPs)的广泛应用带来的潜在环境风险已经引起国内外的广泛关注.金属型纳米颗粒(MB NPs)具有金属毒性和纳米毒性的双重效应,其生物毒性和生态风险已成为纳米毒理学的研究热点之一.植物作为生态系统中的重要组分,是NPs生物累积并进入食物链的潜在途径.本文论述了MB NPs在植物中的吸收、转运和累积过程,总结了MB NPs对植物的毒性效应及其机制,探讨了MB NPs植物毒性的影响因素,综合评述了近年来关于MB NPs对植物特别是农作物的生态毒理效应的研究进展,同时分析了目前研究中存在的问题,对今后的研究方向进行了展望.  相似文献   

9.
10.
所有细胞的RNA都是按照DNA模板的指令,由RNA聚合酶催化合成的。RNA的生物合成(转录)过程的有些地方与DNA复制相似,如底物是核苷三磷酸,合成方向是5′→3′。但,RNA聚合酶不需要引物,也不具备有校正作用的核酸外切酶活力。DNA模板在RNA合成中是全保留的,而在DNA复制中则是半保留的。原核生物的转录原核生物转录的源料主要是从大肠杆菌取得的。大肠杆菌的所有RNA都是由同一种RNA聚合酶催化合成的。这种酶的分子量为460KDa,全酶的亚基组成为α_2ββ′σ,核心酶为α_2ββ′。σ亚基只在转录的启动中起作用,  相似文献   

11.
Microorganisms can complex and sequester heavy metals, rendering them promising living factories for nanoparticle production. Glutathione (GSH) is pivotal in cadmium sulfide (CdS) nanoparticle formation in yeasts and its synthesis necessitates two enzymes: γ‐glutamylcysteine synthetase (γ‐GCS) and glutathione synthetase (GS). Hereby, we constructed two recombinant E. coli ABLE C strains to over‐express either γ‐GCS or GS and found that γ‐GCS over‐expression resulted in inclusion body formation and impaired cell physiology, whereas GS over‐expression yielded abundant soluble proteins and barely impeded cell growth. Upon exposure of the recombinant cells to cadmium chloride and sodium sulfide, GS over‐expression augmented GSH synthesis and ameliorated CdS nanoparticles formation. The resultant CdS nanoparticles resembled those from the wild‐type cells in size (2–5 nm) and wurtzite structures, yet differed in dispersibility and elemental composition. The maximum particle yield attained in the recombinant E. coli was ≈2.5 times that attained in the wild‐type cells and considerably exceeded that achieved in yeasts. These data implicated the potential of genetic engineering approach to enhancing CdS nanoparticle biosynthesis in bacteria. Additionally, E. coli‐based biosynthesis offers a more energy‐efficient and eco‐friendly method as opposed to chemical processes requiring high temperature and toxic solvents. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

12.
A novel and simple method for preparing cadmium sulfide nanoparticles (CdS NPs) functionalized colloidal carbon particles (CPs) has been successfully developed by in situ growing abundant CdS NPs on the surfaces of monodisperse carbon particles (CdS/CPs). The obtained CdS/CPs conjugates as signal amplification labels were further used for the ultrasensitive determination of thrombin. The CdS/CPs conjugates were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible absorption spectrum (UV). The protein electrical detection involves a dual binding event, based on thrombin linked to the CdS/CPs tags and glass surface by the specific aptamer-protein affinity interactions and a succedent electrochemical stripping transduction. Owing to the high-content CdS NPs on carbon particles, this assay allowed a desirable detection limit of 6.0 × 10(-17)M, which was 1000 times lower than that of only using CdS NPs as labels in the control experiments. This protocol exhibited excellent selectivity against these common proteins such as bovine plasma albumin, lysozyme and hemoglobin. The signal amplification approach proposed here provides a facile, cost-effective method for the ultrasensitive determination of thrombin in the practical samples.  相似文献   

13.
Hemoglobin (Hb) is immobilized with cadmium sulfide (CdS) nanoparticles (NPs) on pyrolytic graphite (PG) electrode to characterize the electrochemical reactivity and peroxidase activity of the protein. The result demonstrates that fine redox waves of Hb can be achieved after this protein is entrapped in CdS NPs. Meanwhile, the protein can exhibit nice catalytic activity towards hydrogen peroxide (H2O2). Linear relationship between the reductive peak current and the H2O2 concentration has been obtained from 5.0 x 10(-6) to 4.0 x 10(-4) mol/L, on the basis of which a new kind of H2O2 biosensor might be developed in the future.  相似文献   

14.
Here an attempt was made to biologically synthesize fluorescent cadmium sulfide nanoparticles and to immobilize the synthesized nanoparticles in PHB nanoparticles. The present study uses Brevibacterium casei SRKP2 as a potential producer for the green synthesis of CdS nanoparticles. Biologically synthesized nanoparticles were characterized and confirmed using electron microscopy and XRD. The size distribution of the nanoparticles was found to be 10-30 nm followed by which the consequence of time, growth of the organism, pH, concentration of CdCl(2) and Na(2)S on the synthesis of nanoparticles were checked. Enhanced synthesis and fluorescence emission of CdS nanoparticles were achieved at pH 9. The synthesized CdS NPs were immobilized with PHB and were characterized. The fluorescent intensity of the CdS nanoparticles remained unaffected even after immobilization within PHB nanoparticles.  相似文献   

15.

The biosynthesis of quantum dots has been explored as an alternative to traditional physicochemical methods; however, relatively few studies have determined optimal synthesis parameters. Saccharomyces cerevisiae sequentially treated with sodium selenite and cadmium chloride synthesized CdSe quantum dots in the cytoplasm. These nanoparticles displayed a prominent yellow fluorescence, with an emission maximum of approximately 540 nm. The requirement for glutathione in the biosynthetic mechanism was explored by depleting its intracellular content through cellular treatments with 1-chloro-2,4-dinitrobenzene and buthionine sulfoximine. Synthesis was significantly inhibited by both of these reagents when they were applied after selenite treatment prior to the addition of cadmium, thereby indicating that glutathione contributes to the biosynthetic process. Determining the optimum conditions for biosynthesis revealed that quantum dots were produced most efficiently at entry into stationary phase followed by direct addition of 1 mM selenite for only 6 h and then immediately incubating these cells in fresh growth medium containing 3 mM Cd (II). Synthesis of quantum dots reached a maximum at 84 h of reaction time. Biosynthesis of 800-μg g−1 fresh weight cells was achieved. For the first time, significant efforts have been undertaken to optimize each aspect of the CdSe biosynthetic procedure in S. cerevisiae, resulting in a 70% increased production.

  相似文献   

16.
Although hydrogen sulfide (H2S) is perhaps best known as a toxic gas, the electron‐rich H2S functions as an energy source and electron donor for chemolithotrophic and photosynthetic bacteria, via sulfide oxidation, and is a universal substrate for cysteine biosynthesis. These distinct harmful and beneficial roles of H2S suggest the need to ‘sense’ prevailing concentrations of sulfide and downstream reactive sulfur species (RSS) and regulate the expression of genes mediating sulfide homeostasis. The paper by Li et al. in this issue of Molecular Microbiology adds Cupriavidus FisR to an expanding repertoire of regulatory mechanisms that bacteria have evolved to sense cellular RSS and mitigate their deleterious effects.  相似文献   

17.
This IRCSET-EMPOWER (Irish Research Council for Science, Engineering and Technology Postdoctoral Research Grant) project aims to improve current methodology for the synthesis of metal nanoparticles (NPs). The development of efficient methodology for metal nanomaterials synthesis is an economical and environmental challenge. While the current methods for NPs synthesis are often energy-intensive and involve toxic chemicals, NPs biosynthesis can be carried on at circumneutral pH and mild temperature, resulting in low cost and environmental impact. Nanomaterial biosynthesis has been already observed in magnetotactic bacteria, diatoms, and S-layer bacteria, however, controlled NPs biosynthesis is a relatively new area of research with considerable potential for development. A thorough understanding of the biochemical mechanism involved in NPs biosynthesis is needed, before biosynthetic methods can be economically competitive. The analysis and identification of active species in the nucleation and growth of metal NPs is a daunting task, due to the complexity of the microbial system. This project work focuses on the controlled biosynthesis of gold NPs by fungal microorganisms and aims to determine the biochemical mechanism involved in nucleation and growth of the particles.  相似文献   

18.
Bacteria tolerant to organic solvents   总被引:5,自引:0,他引:5  
The toxic effects that organic solvents have on whole cells is an important drawback in the application of these solvents in environmental biotechnology and in the production of fine chemicals by whole-cell biotransformations. Hydrophobic organic solvents, such as toluene, are toxic for living organisms because they accumulate in and disrupt cell membranes. The toxicity of a compound correlates with the logarithm of its partition coefficient with octanol and water (log P ow). Substances with a log P ow value between 1 and 5 are, in general, toxic for whole cells. However, in recent years different bacterial strains have been isolated and characterized that can adapt to the presence of organic solvents. These strains grow in the presence of a second phase of solvents previously believed to be lethal. Different mechanisms contributing to the solvent tolerance of these strains have been found. Alterations in the composition of the cytoplasmic and outer membrane have been described. These adaptations suppress the effects of the solvents on the membrane stability or limit the rate of diffusion into the membrane. Furthermore, changes in the rate of the biosynthesis of the phospholipids were reported to accelerate repair processes. In addition to these adaptation mechanisms compensating the toxic effect of the organic solvents, mechanisms do exist that actively decrease the amount of the toxic solvent in the cells. An efflux system actively decreasing the amount of solvents in the cell has been described recently. We review here the current knowledge about exceptional strains that can grow in the presence of toxic solvents and the mechanisms responsible for their survival. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

19.
The metal‐reducing bacterium Shewanella oneidensis is capable of reducing various metal(loid)s and produces nanoparticles (NPs) extracellularly, in which outer membrane c‐type cytochromes (OMCs) have been suggested to play important roles. The objective of this study was to investigate the influence of the OMCs, that is, MtrC and OmcA, on the size and activity of the extracellular silver NPs (AgNPs) and silver sulfide NPs (Ag2S NPs) produced by S. oneidensis MR‐1. We found that (i) the lack of OMCs on S. oneidensis cell surface decreased the particle size of the extracellular biogenic AgNPs and Ag2S NPs; (ii) the biogenic AgNPs from the mutant lacking OMCs showed higher antibacterial activity; and (iii) the biogenic Ag2S NPs from the mutant lacking OMCs exhibited higher catalytic activity in methylviologen reduction. The results suggest that it may be possible to control particle size and activity of the extracellular biogenic NPs via controlled expression of the genes encoding surface proteins. In addition, we also reveal that in extracellular biosynthesis of NPs the usually neglected non‐cell‐associated NPs could have high catalytic activity, highlighting the need of novel methods that can efficiently retain extracellular NPs in the biosynthesis processes. Biotechnol. Bioeng. 2013; 110: 1831–1837. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
An advanced electrochemical sensor for the detection of enrofloxacin (ENR) based on the use of a modified electrode containing cadmium sulfide (CdS) nanoparticles (NPs) is reported. The CdS NPs were synthesized and characterized and then coated onto the electrode to fabricate a modified electrode that exhibited a lower limit of detection of 9.5 × 10?8 mol·L?1. This detection limit compares with a traditional electrode that exhibited a concentration detection range of 1.0 × 10?2 to 1.0 × 10?7 mol·L?1. This modified electrode demonstrated good selectivity, reproducibility, response time (<40 s), lifetime (up to 12 wk), and pH range (3.3‐7.2) for the determination of ENR in real samples (eg, pig urine).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号