首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid rafts and caveolae are biochemically similar, specialized domains of the PM (plasma membrane) that cluster specific proteins. However, they are morphologically distinct, implying different, possibly complementary functions. Two-dimensional gel electrophoresis preceding identification of proteins by MS was used to compare the relative abundance of proteins in DRMs (detergent-resistant membranes) isolated from HUVEC (human umbilical-vein endothelial cells), and caveolae immunopurified from DRM fractions. Various signalling and transport proteins were identified and additional cell-surface biotinylation revealed the majority to be exposed, demonstrating their presence at the PM. In resting endothelial cells, the scaffold of immunoisolated caveolae consists of only few resident proteins, related to structure [CAV1 (caveolin-1), vimentin] and transport (V-ATPase), as well as the GPI (glycosylphosphatidylinositol)-linked, surface-exposed protein CD59. Further quantitative characterization by immunoblotting and confocal microscopy of well-known [eNOS (endothelial nitric oxide synthase) and CAV1], less known [SNAP-23 (23 kDa synaptosome-associated protein) and BASP1 (brain acid soluble protein 1)] and novel [C8ORF2 (chromosome 8 open reading frame 2)] proteins showed different subcellular distributions with none of these proteins being exclusive to either caveolae or DRM. However, the DRM-associated fraction of the novel protein C8ORF2 (approximately 5% of total protein) associated with immunoseparated caveolae, in contrast with the raft protein SNAP-23. The segregation of caveolae from lipid rafts was visually confirmed in proliferating cells, where CAV1 was spatially separated from eNOS, SNAP-23 and BASP1. These results provide direct evidence for the previously suggested segregation of transport and signalling functions between specialized domains of the endothelial plasma membrane.  相似文献   

2.
To search for caveolar proteins, mice were immunised with rat adipocyte membranes. Hybridoma supernatants were screened for antibodies to proteins on the cytosolic face of caveolae by indirect immunoelectron microscopy of immunogold-labelled adipocyte plasma membrane sheets adsorbed on electron-microscope (EM) grids. One of the hybridoma supernatants (2F11) produced a specific labelling of caveolae which was much more intense than that obtained with caveolin-1 antibodies. In Western blots of sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) separated proteins in crude membrane fractions from different rat tissues, 2F11 labelled a band corresponding to 60 kDa. The intensity of 2F11 labelling was high in adipose tissue and in other tissues varied in parallel to caveolin- labelling. In blots of plasma membrane (PM) and light-microsomal (LM) fractions from a homogenate of adipocytes, prior insulin stimulation of the adipocytes translocated GLUT-4 from the LM to the PM fraction, but was without effect on the distribution of the 60-kDa protein labelled by 2F11. Digestion with endoproteinase lys-C produced the same pattern of immunoreactive fragments of the protein in the vesicular PM and LM fractions, indicating similar membrane topology of the 2F11-reactive, 60-kDa protein in vesicles of PM and LM fractions.  相似文献   

3.
The SNARE proteins, syntaxin, SNAP-25, and synaptobrevin have long been known to provide the driving force for vesicle fusion in the process of regulated exocytosis. Of particular interest is the initial interaction between SNAP-25 and syntaxin to form the t-SNARE heterodimer, an acceptor for subsequent synaptobrevin engagement. In vitro studies have revealed at least two different dynamic conformations of t-SNARE heterodimer defined by the degree of association of the C-terminal SNARE motif of SNAP-25 with syntaxin. At the plasma membrane, these proteins are organized into dense clusters of 50–60 nm in diameter. More recently, the t-SNARE interaction within these clusters was investigated in live cells at the molecular level, estimating each cluster to contain 35–70 t-SNARE molecules. This work reported the presence of both partially and fully zippered t-SNARE complex at the plasma membrane in agreement with the earlier in vitro findings. It also revealed a spatial segregation into distinct clusters containing predominantly one conformation apparently patterned by the surrounding lipid environment. The reason for this dynamic t-SNARE complex in exocytosis is uncertain; however, it does take us one step closer to understand the complex sequence of events leading to vesicle fusion, emphasizing the role of both membrane proteins and lipids.  相似文献   

4.
The docking and fusion of cargo-containing vesicles with target membranes of eukaryotic cells is mediated by the interaction of SNARE proteins present on both vesicle and target membranes. In many cases, the target membrane SNARE, or t-SNARE, exists as a complex of syntaxin with a member of the SNAP-25 family of palmitoylated proteins. We have identified a novel human kinase SNAK (SNARE kinase) that specifically phosphorylates the nonneuronal t-SNARE SNAP-23 in vivo. Interestingly, only SNAP-23 that is not assembled into t-SNARE complexes is phosphorylated by SNAK, and phosphorylated SNAP-23 resides exclusively in the cytosol. Coexpression with SNAK significantly enhances the stability of unassembled SNAP-23, and as a consequence, the assembly of newly synthesized SNAP-23 with syntaxin is augmented. These data demonstrate that phosphorylation of SNAP-23 by SNAK enhances the kinetics of t-SNARE assembly in vivo.  相似文献   

5.
Caveolar endocytosis has an important function in the cellular uptake of some bacterial toxins, viruses and circulating proteins. However, the molecular machinery involved in regulating caveolar uptake is poorly defined. Here, we demonstrate that caveolar endocytosis is regulated by syntaxin 6, a target membrane soluble N-ethylmaleimide attachment protein receptor (t-SNARE) involved in membrane fusion events along the secretory pathway. When syntaxin 6 function was inhibited, internalization through caveolae was dramatically reduced, whereas other endocytic mechanisms were unaffected. Syntaxin 6 inhibition also reduced the presence of caveolin-1 and caveolae at the plasma membrane. In addition, syntaxin 6 inhibition decreased the delivery of GM1 ganglioside (GM1) and glycosylphosphatidylinositol (GPI)-GFP (but not vesicular stomatitis virus-glycoprotein G; VSV-G) protein from the Golgi complex to the plasma membrane. Addition of GM1 to syntaxin 6-inhibited cells resulted in the reappearance of caveolin-1 and caveolae at the plasma membrane, and restored caveolar uptake. These results suggest that syntaxin 6 regulates the delivery of microdomain-associated lipids and proteins to the cell surface, which are required for caveolar endocytosis.  相似文献   

6.
Intersectin, a multiple Eps15 homology and Src homology 3 (SH3) domain-containing protein, is a component of the endocytic machinery in neurons and nonneuronal cells. However, its role in endocytosis via caveolae in endothelial cells (ECs) is unclear. We demonstrate herein by coimmunoprecipitation, velocity sedimentation on glycerol gradients, and cross-linking that intersectin is present in ECs in a membrane-associated protein complex containing dynamin and SNAP-23. Electron microscopy (EM) immunogold labeling studies indicated that intersectin associated preferentially with the caveolar necks, and it remained associated with caveolae after their fission from the plasmalemma. A cell-free system depleted of intersectin failed to support caveolae fission from the plasma membrane. A biotin assay used to quantify caveolae internalization and extensive EM morphological analysis of ECs overexpressing wt-intersectin indicated a wide range of morphological changes (i.e., large caveolae clusters marginated at cell periphery and pleiomorphic caveolar necks) as well as impaired caveolae internalization. Biochemical evaluation of caveolae-mediated uptake by ELISA showed a 68.4% inhibition by reference to control. We also showed that intersectin interaction with dynamin was important in regulating the fission and internalization of caveolae. Taken together, the results indicate the crucial role of intersectin in the mechanism of caveolae fission in endothelial cells.  相似文献   

7.
The fibroblast-like synoviocyte is a CD13-positive cell-type containing numerous caveolae, both single and interconnected clusters. In unstimulated cells, all single caveolae at the cell surface and the majority of those localized deeper into the cytoplasm were freely accessible from the medium, as judged from electron microscopy of synoviocytes exposed to the membrane impermeable marker Ruthenium Red. Caveolar internalization could be induced by a CD13 antibody or by cholera toxin B subunit (CTB). Thus, in experiments using sequential labeling with Alexa 488- and 594-conjugated CTB, about 50% of CTB-positive caveolae were internalized by 5 min of chase, and these remained inaccessible from the cell surface for periods up to 24 h. No colocalization with an endosomal marker, EEA1, or Lysotracker was observed, indicating that internalized caveolae clusters represent a static compartment. Vimentin was identified as the most abundant protein in detergent resistant membranes (DRM’s), and by immunogold electron microscopy caveolae were seen in intimate contact with intermediate-size filaments. These observations indicate that vimentin-based filaments are responsible for the spatio-temporal fixation of caveolae clusters. RECK, a glycosylphosphatidylinositol-anchored protein acting as a negative regulator of cell surface metalloproteinases, was also localized to the caveolae clusters. We propose that these clusters function as static reservoirs of specialized lipid raft domains where proteins involved in cell–cell interactions, such as CD13, can be sequestered by binding to RECK in a regulatory manner.  相似文献   

8.
To investigate whether caveolae are involved in constitutive endocytic trafficking, we expressed N- and C- terminally green fluorescent protein (GFP)-tagged caveolin- 1 fusion proteins in HeLa, A431, and Madin-Darby canine kidney cells. The fusion proteins were shown by immunogold labeling to be sorted correctly to caveolae. By using confocal microscopy and photobleaching techniques, it was found that although intracellular structures labeled with GFP-tagged caveolin were dynamic, GFP-labeled caveolae were very immobile. However, after incubation with methyl- beta-cyclodextrin, distinct caveolae disappeared and the mobility of GFP-tagged caveolin in the plasma membrane increased. Treatment of cells with cytochalasin D caused lateral movement and aggregation of GFP-labeled caveolae. Therefore, both cholesterol and an intact actin cytoskeleton are required for the integrity of GFP-labeled caveolae. Moreover, stimulation with okadaic acid caused increased mobility and internalization of the labeled caveolae. Although the calculated mobile fraction (for t = infinity) of intracellular, GFP-tagged caveolin- associated structures was 70-90%, GFP-labeled caveolae in unstimulated cells had a mobile fraction of <20%, a value comparable to that previously reported for E-cadherin in junctional complexes. We therefore conclude that caveolae are not involved in constitutive endocytosis but represent a highly stable plasma membrane compartment anchored by the actin cytoskeleton.  相似文献   

9.
Caveolae and its structural protein caveolin-1 (Cav-1) are abundant in vascular endothelial cells (ECs) and have been suggested to contribute to cell signaling and cholesterol trafficking. This study investigated the effect of cholesterol on the movement of caveolae-related proteins in human umbilical vein ECs with use of caveolae functional proteomics. After cholesterol exposure to ECs for 2 to 4 h, caveolae were isolated and separated on 2-D protein gels. Among 40 protein spots revealed in caveolae fractions, the ATP synthase beta subunit (ATPS-beta), one of the 3 proteins enriched by cholesterol in caveolae, was confirmed by western blotting and confocal microscopy. Further, cholesterol exposure increased the level of ATPS-beta, along with Cav-1 and cholesterol in caveolae. These effects could be blocked by cytochalasin B, an actin cytoskeleton disruptor. ATPS-beta was physically associated with Cav-1, as demonstrated by co-immunoprecipitation and GST-Cav-1 fusion protein pull-down assay. Cholesterol increased the extracellular ATP release mediated by ATPS-beta, since this action could be blocked by piceatannol or oligomycin, ATPS inhibitors. Thus, the ectopic localization of ATPS-beta may participate in the energy balance of cells in response to the change in intracellular cholesterol levels.  相似文献   

10.
The t-SNARE in a late Golgi compartment (Tlg2p) syntaxin is required for endocytosis and localization of cycling proteins to the late Golgi compartment in yeast. We show here that Tlg2p assembles with two light chains, Tlg1p and Vti1p, to form a functional t-SNARE that mediates fusion, specifically with the v-SNAREs Snc1p and Snc2p. In vitro, this t-SNARE is inert, locked in a nonfunctional state, unless it is activated for fusion. Activation can be mediated by a peptide derived from the v-SNARE, which likely bypasses additional regulatory proteins in the cell. Locking t-SNAREs creates the potential for spatial and temporal regulation of fusion by signaling processes that unleash their fusion capacity.  相似文献   

11.
Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of alpha-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins.  相似文献   

12.
The process of fusion at the nerve terminal is mediated via a specialized set of proteins in the synaptic vesicles and the presynaptic membrane. Three soluble N-ethylmaleimide-sensitive factor (NSF)-attachment protein receptors (SNAREs) have been implicated in membrane fusion. The structure and arrangement of these SNAREs associated with lipid bilayers were examined using atomic force microscopy. A bilayer electrophysiological setup allowed for measurements of membrane conductance and capacitance. Here we demonstrate that the interaction of these proteins to form a fusion pore is dependent on the presence of t-SNAREs and v-SNARE in opposing bilayers. Addition of purified recombinant v-SNARE to a t-SNARE-reconstituted lipid membrane increased only the size of the globular t-SNARE oligomer without influencing the electrical properties of the membrane. However when t-SNARE vesicles were added to a v-SNARE membrane, SNAREs assembles in a ring pattern and a stepwise increase in capacitance, and increase in conductance were observed. Thus, t- and v-SNAREs are required to reside in opposing bilayers to allow appropriate t-/v-SNARE interactions leading to membrane fusion.  相似文献   

13.
We have demonstrated that the plasmalemmal vesicles (caveolae) of the continuous microvascular endothelium function as transcytotic vesicular carriers for protein molecules > 20 A and that transcytosis is an N-ethylmaleimide-sensitive factor (NSF)-dependent, N-ethylmaleimide-sensitive process. We have further investigated NSF interactions with endothelial proteins to find out 1) whether a complete set of fusion and targeting proteins is present in the endothelium; 2) whether they are organized in multimolecular complexes as in neurons; and 3) whether the endothelial multimolecular complexes differ from their neuronal counterparts, because of their specialized role in transcytosis. To generate the complexes, we have used myc-NSF, cultured pulmonary endothelial cells, and rat lung cytosol and membrane preparations; to detect them we have applied coimmunoprecipitation with myc antibodies; and to characterize them we have used velocity sedimentation and cross-linking procedures. We have found that both cytosolic and membrane fractions contain complexes that comprise beside soluble NSF attachment proteins and SNAREs (soluble NSF attachment protein receptor), rab 5, dynamin, caveolin, and lipids. By immunogold labeling and negative staining we have detected in these complexes, myc-NSF, syntaxin, dynamin, caveolin, and endogenous NSF. Similar complexes are formed by endogenous NSF. The results indicate that complexes with a distinct protein-lipid composition exist and suggest that they participate in targeting, fusion, and fission of caveolae with the endothelial plasmalemma.  相似文献   

14.
Regulated exocytosis involves calcium-dependent fusion of secretory vesicles with the plasma membrane with three SNARE proteins playing a central role: the vesicular synaptobrevin and the plasma membrane syntaxin1 and SNAP-25. Cultured bovine chromaffin cells possess defined plasma membrane microdomains that are specifically enriched in both syntaxin1 and SNAP-25. We now show that in both isolated cells and adrenal medulla slices these target SNARE (t-SNARE) patches quantitatively coincide with single vesicle secretory spots as detected by exposure of the intravesicular dopamine beta-hydroxylase onto the plasmalemma. During exocytosis, neither area nor density of the syntaxin1/SNAP-25 microdomains changes on the plasma membrane of both preparations confirming that preexisting clusters act as the sites for vesicle fusion. Our analysis reveals a high level of colocalization of L, N and P/Q type calcium channel clusters with SNAREs in adrenal slices; this close association is altered in individual cultured cells. Therefore, microdomains carrying syntaxin1/SNAP-25 and different types of calcium channels act as the sites for physiological granule fusion in "in situ" chromaffin cells. In the case of isolated cells, it is the t-SNAREs microdomains rather than calcium channels that define the sites of exocytosis.  相似文献   

15.
The fine structure of plasmalemmal tubular invaginations with caveolae and coated pits in the sinus endothelial cells of the rat spleen has been demonstrated by scanning and transmission electron microscopy. In addition, the three-dimensional structure of the tubular invagination has been revealed by computer-aided reconstruction. The tubular invaginations of the plasma membrane plunged into the cytoplasm everywhere from the apical, lateral, and basal surfaces of the plasma membrane. The invaginations were tubular and branched away, and their plasma membranes were reinvaginated to form numerous caveolae and occasional coated pits. Numerous caveolae were found in clusters that looked similar to a bunch of grapes and the coated pits were present at the base of the clusters. The caveolae and coated pits derived from the tubular invaginations were almost ultrastructurally identical to those derived from the surface plasma membrane. From examination of the fractured surfaces of the endothelial cells treated with the aldehyde prefix osmium-dimethyl sulfoxide-osmium method and of ultrathin sections of those infiltrated by lanthanum nitrate, the tubular invaginations were found to not penetrate any endothelial cells. A computer-aided reconstruction revealed that the caveolae derived from the tubular invaginations were in close apposition to the surface-connected canaliculi. The reaction product of Concanavalin A conjugated to horseradish peroxidase was present on the outer leaflet of the membranes of the coated pits and coated vesicles and also in the contents of the endosomes, but it was absent from any caveolae. Based on our observations, the functional significance of the tubular invaginations in sinus endothelial cells is discussed. Accepted: 13 September 1999  相似文献   

16.
17.
Intracellular membrane trafficking along endocytic and secretory transport pathways plays a critical role in diverse cellular functions including both developmental and pathological processes. Briefly, proteins and lipids destined for transport to distinct locations are collectively assembled into vesicles and delivered to their target site by vesicular fusion. SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins are required for these events, during which v-SNAREs (vesicle SNAREs) interact with t-SNAREs (target SNAREs) to allow transfer of cargo from donor vesicle to target membrane. Recently, the t-SNARE family member, syntaxin-6, has been shown to play an important role in the transport of proteins that are key to diverse cellular dynamic processes. In this paper, we briefly discuss the specific role of SNAREs in various mammalian cell types and comprehensively review the various roles of the Golgi- and endosome-localized t-SNARE, syntaxin-6, in membrane trafficking during physiological as well as pathological conditions.  相似文献   

18.
Caveolae are characteristic invaginations of the mammalian plasma membrane (PM) implicated in lipid regulation, signal transduction and endocytosis. We have employed electron microscope tomography (ET) to quantify caveolae structure–function relationships in three-dimension (3D) at high resolution both in conventionally fixed and in fast-frozen/freeze-substituted (intact) cells as well as immunolabelled PM lawns. Our findings provide a detailed quantitative comparison of the average caveola dimensions for different cell types including tissue endothelial cells and cultured 3T3-L1 adipocytes. These studies revealed the presence of a spiked caveolar coat and a wide caveolar neck open to the extracellular milieu that is sensitive to conventional fixation; the neck region appeared to form a specialized microdomain with associated cytoplasmic material. In endothelial cells in situ in pancreatic islets of Langerhans, the diaphragm spanning the caveolar opening was clearly resolved by ET, and the involuted 3D topology of the cell surface mapped to measure the contribution of caveolar membranes to local increases in the surface area of the PM. The complexity of connections among caveolae and to the actin cytoskeleton and microtubules suggests that individual caveolae may be interconnected through a complex filamentous network to form a single functional unit.  相似文献   

19.
《Autophagy》2013,9(12):1570-1572
We recently showed that phagophore biogenesis requires SNAREs. Our data indicate that the exocytic Q/t-SNAREs Sso1/2 and Sec9 are required for one of the earliest steps in autophagosome biogenesis, the homotypic fusion of Atg9-containing vesicles. We propose that this step precedes the formation of Atg9-containing tubulovesicular clusters (TVCs) that is a key step in perivacuolar, phagophore assembly. We also found that the endosomal Q/t-SNARE Tlg2 and the R/v-SNAREs Sec22 and Ykt6 interact with Sso1-Sec9, and are required for normal Atg9 trafficking. Thus, autophagosome biogenesis appears to involve multiple SNARE-mediated fusion events. These findings provide novel insights into the mechanism of autophagosome construction.  相似文献   

20.
Endothelial transcytosis in health and disease   总被引:1,自引:0,他引:1  
The visionaries predicted the existence of transcytosis in endothelial cells; the cell biologists deciphered its mechanisms and (in part) the molecules involved in the process; the cell pathologists unravelled the presence of defective transcytosis in some diseases. The optimistic perspective is that transcytosis, in general, and receptor-mediated transcytosis, in particular, will be greatly exploited in order to target drugs and genes to exclusive sites in and on endothelial cells (EC) or underlying cells. The current recognition that plasmalemmal vesicles (caveolae) are the vehicles involved in EC transcytosis has moved through various phases from intial considerations of caveolae as unmovable sessile non-functional plasmalemma invaginations to the present identification of a multitude of molecules and a crowd of functions associated with these ubiquitous structures of endothelial and epithelial cells. Further understanding of the molecular machinery that precisely guides caveolae through the cells so as to reach the target membrane (fission, docking, and fusion), to avoid lysosomes, or on the contrary, to reach the lysosomes, and discharge the cargo molecules will assist in the design of pathways that, by manipulating the physiological route of caveolae, will carry molecules of choice (drugs, genes) at controlled concentrations to precise destinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号