首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探讨人载脂蛋白A-Ⅰ(apoA-Ⅰ,apolipoproteinA-Ⅰ)α螺旋不同位点的半胱氨酸突变后,对蛋白二级结构和脂质结合能力的影响,利用定点诱变技术构建apoA-Ⅰ的天然半胱氨酸突变体apoA-ⅠMilano(R173C),及其它α螺旋片段上的半胱氨酸突变体,分别为apoA-Ⅰ(S52C),apoA-Ⅰ(N74C),apoA-Ⅰ(L107C),apoA-Ⅰ(K129C),和apoA-Ⅰ(L195C).观察比较各种野生型及突变apoA-Ⅰ单体蛋白的α螺旋含量和二级结构稳定性及其脂质结合能力.结果显示,野生型apoA-Ⅰ,apoA-Ⅰ(S52C),apoA-Ⅰ(N74C),apoA-Ⅰ(L107C),apoA-Ⅰ(K129C),apoA-ⅠMilano和apoA-Ⅰ(L195C)的α螺旋含量分别为54±4%,49±4%,50±2%,51±6%,56±4%,52±3%,和54±1%,各种蛋白的α螺旋含量无显著性差异(P>0.05).野生型apoA-Ⅰ的变性标准自由能(ΔG0D)为10.5kJ/mol;apoA-Ⅰ(S52C)和apoA-ⅠMilano的ΔG0D比野生型低2.1kJ/mol;而apoA-Ⅰ(K129C)的ΔG0D比野生型apoA-Ⅰ高1.6kJ/mol.与野生型apoA-Ⅰ相比,apoA-Ⅰ(K129C)和apoA-Ⅰ(L195C)两个突变体与脂质结合能力明显下降(P<0.05),而其它半胱氨酸突变体(包括apoA-ⅠMilano)在脂质结合动力学方面与野生型apoA-Ⅰ无明显差异.以上结果提示,不同位点发生的半胱氨酸突变对apoA-Ⅰ单体蛋白的α螺旋含量无明显影响,但对蛋白的二级结构稳定性和脂质结合能力影响不尽相同.  相似文献   

2.
Apolipoprotein(apo)A-I(Milano) (R173C) and apoA-I(Paris) (R151C) are rare cysteine variants of wild-type (WT) apoA-I that possess novel antioxidant properties on phospholipid surfaces. Yet, the two variants differ in their ability to inhibit lipid peroxidation. In this study, we used synthetic peptides (18mers) to investigate the structural basis for the difference in antioxidant activity between apoA-I(Milano) and apoA-I(Paris). A peptide (aa 167-R173C-184) based on the amphipathic alpha helix harboring the R173C mutation inhibited superoxide anion-mediated oxidation of phospholipid in a dose-dependent manner, but it failed to directly quench superoxide anions in aqueous solution, indicating that the peptide acted at the level of phospholipid to inhibit lipid peroxidation just like the full-length cysteine variant. Peptide 145-R151C-162 based on the helical segment containing R151C exhibited the same capacity as peptide 167-R173C-184 to inhibit lipid peroxidation. Thus, the difference in antioxidant activity between apoA-I(Milano) and apoA-I(Paris) was not governed by the primary amino acid sequence of their individual amphipathic alpha helices, rather contextual constraints within the full-length variants set the difference in antioxidant activity. Cysteine-free peptides were weak inhibitors of lipid peroxidation. These results suggest that thiol-bearing helical peptides based on apoA-I(Milano) may be useful to combat inflammatory related diseases.  相似文献   

3.
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein (HDL) and a principal mediator of the reverse cholesterol transfer pathway. Variants of apoA-I have been shown to be associated with hereditary amyloidosis. We previously characterized the G26R and L178H variants that both possess decreased stability and increased fibril formation propensity. Here we investigate the Milano variant of apoAI (R173C; apoAI-M), which despite association with low plasma levels of HDL leads to low prevalence of cardiovascular disease in carriers of this mutation. The R173C substitution is located to a region (residues 170 to 178) that contains several fibrillogenic apoA-I variants, including the L178H variant, and therefore we investigated a potential fibrillogenic property of the apoAI-M protein. Despite the fact that apoAI-M shared several features with the L178H variant regarding increased helical content and low degree of ThT binding during prolonged incubation in physiological buffer, our electron microscopy analysis revealed no formation of fibrils. These results suggest that mutations inducing secondary structural changes may be beneficial in cases where fibril formation does not occur.  相似文献   

4.
Models for the binding of the 200-residue carboxy-terminal domain of two mutants of apolipoprotein A-I (apo A-I), apo A-I(R173C)(Milano) and apo A-I(R151C)(Paris), to lipid in discoidal high-density lipoprotein (HDL) particles are presented. In both models, two monomers of the mutant apo A-I molecule bind to lipid in an antiparallel manner, with the long axes of their helical repeats running perpendicular to the normal of the lipid bilayer to form a single disulfide-linked homodimer. The overall structures of the models of these two mutants are very similar, differing only in helix-helix registration. Thus these models are consistent with experimental observations that reconstituted HDL particles containing apo A-I(Milano) and apo A-I(Paris) are very similar in diameter to reconstituted HDL particles containing wild-type apo A-I, and they support the belief that apo A-I binds to lipid in discoidal HDL particles via the belt conformation.  相似文献   

5.
Chroni A  Koukos G  Duka A  Zannis VI 《Biochemistry》2007,46(19):5697-5708
ATP-binding cassette transporter A-1 (ABCA1)-mediated lipid efflux to lipid-poor apolipoprotein A-I (apoA-I) results in the gradual lipidation of apoA-I. This leads to the formation of discoidal high-density lipoproteins (HDL), which are subsequently converted to spherical HDL by the action of lecithin:cholesterol acyltransferase (LCAT). We have investigated the effect of point mutations and deletions in the carboxy-terminal region of apoA-I on the biogenesis of HDL using adenovirus-mediated gene transfer in apoA-I-deficient mice. It was found that the plasma HDL levels were greatly reduced in mice expressing the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)], shown previously to diminish the ABCA1-mediated lipid efflux. The HDL levels were normal in mice expressing the WT apoA-I, the apoA-I[Delta(232-243)] deletion mutant, or the apoA-I[E191A/H193A/K195A] point mutant, which promote normal ABCA1-mediated lipid efflux. Electron microscopy and two-dimensional gel electrophoresis showed that the apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] mutants formed mainly prebeta-HDL particles and few spherical particles enriched in apoE, while WT apoA-I, apoA-I[Delta(232-243)], and apoA-I[E191A/H193A/K195A] formed spherical alpha-HDL particles. The findings establish that (a) deletions that eliminate the 220-231 region of apoA-I prevent the synthesis of alpha-HDL but allow the synthesis of prebeta-HDL particles in vivo, (b) the amino-terminal segment 1-184 of apoA-I can promote synthesis of prebeta-HDL-type particles in an ABCA1-independent process, and (c) the charged residues in the 191-195 region of apoA-I do not influence the biogenesis of HDL.  相似文献   

6.
The N-terminal amino acid 1–83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1–83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8–33 and 8–33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1–83 fragment and 8–33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1–83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation.  相似文献   

7.
ApoA-I(R160L)Oslo and apoA-I(P165R) are naturally occurring apolipoprotein (apo) A-I variants that are associated with low HDL-cholesterol in heterozygous carriers. We characterized the capacity of these variants to bind lipid, to activate lecithin:cholesterol acyltransferase (LCAT), and to promote efflux of biosynthetic cholesterol from porcine aortic smooth muscle cells (SMCs) or exogenous cholesterol from lipid-loaded mouse peritoneal macrophages. During cholate dialysis, normal apoA-I and both variants associated completely with dipalmitoylphosphatidylcholine (DPPC) and formed rLpA-I of identical size. However, both apoA-I(P165R) and apoA-I(R160L)Oslo showed a reduced capacity to clear a turbid emulsion of dimyristoylphosphatidylcholine (DMPC). Compared to normal apoA-I, the LCAT-cofactor activity of apoA-I(P165R) and apoA-I(R160L)Oslo as defined by the ratio of Vmax to appKm was reduced significantly by 62% and 29%, respectively (here and throughout the text, the apparent Km is given as Michaelis-Menten kinetics do not take particle binding into account and therefore would result in errors with an interfacial enzyme such as LCAT; Vmax estimates are not affected by this error). ApoA-I/DPPC complexes induced biphasic cholesterol efflux from SMCs with a fast and a slow efflux component. Compared to rLpA-I reconstituted with wild type apoA-I, rLpA-I with apoA-I(P165R) or apoA-I(R160L)Oslo were significantly less effective in promoting cholesterol efflux from SMCs in incubations of 10 min duration but equally effective in incubations of 6 h duration. Lipid-free apoA-I did not induce efflux of biosynthetic cholesterol from SMCs but induced hydrolysis of cholesteryl esters and cholesterol efflux from acetyl-LDL-loaded mouse peritoneal macrophages. In the lipid-free form, both apoA-I variants promoted normal cholesterol efflux from murine peritoneal macrophages.We conclude that amino acid residues arginine 160 and proline 165 of apoA-I contribute to the formation of a domain that is very important for initial lipid binding and contributes to LCAT-activation and promotion of initial cholesterol efflux but not to the stabilization of preformed rLpA-I.  相似文献   

8.
Carriers of the apolipoprotein A-IMilano (apoA-IM) variant, R173C, have reduced levels of plasma HDL but no increase in cardiovascular disease. Despite intensive study, it is not clear whether the removal of the arginine or the introduction of the cysteine is responsible for this altered functionality. We investigated this question using two engineered variations of the apoA-IM mutation: R173S apoA-I, similar to apoA-IM but incapable of forming a disulfide bond, and R173K apoA-I, a conservative mutation. Characterization of the lipid-free proteins showed that the order of stability was wild type≈R173K>R173S>R173C. Compared with wild-type apoA-I, apoA-IM had a lower affinity for lipids, while R173S apoA-I displayed intermediate affinity. The in vivo effects of the apoA-I variants were measured by injecting apoA-I-expressing adeno-associated virus into apoA-I-null mice. Mice that expressed the R173S variant again showed an intermediate phenotype. Thus, both the loss of the arginine and its replacement by a cysteine contribute to the altered properties of apoA-IM. The arginine is potentially involved in an intrahelical salt bridge with E169 that is disrupted by the loss of the positively charged arginine and repelled by the cysteine, destabilizing the helix bundle domain in the apoA-I molecule and modifying its lipid binding characteristics.  相似文献   

9.
Bielicki JK  Oda MN 《Biochemistry》2002,41(6):2089-2096
Apolipoprotein A-I(Milano) (apoA-I(Milano)) and apoA-I(Paris) are rare cysteine variants of apoA-I that produce a HDL deficiency in the absence of cardiovascular disease in humans. This paradox provides the basis for the hypothesis that the cysteine variants possess a beneficial activity not associated with wild-type apoA-I (apoA-I(WT)). In this study, a unique antioxidant activity of apoA-I(Milano) and apoA-I(Paris) is described. ApoA-I(Milano) was twice as effective as apoA-I(Paris) in preventing lipoxygenase-mediated oxidation of phospholipids, whereas apoA-I(WT) was poorly active. Antioxidant activity was observed using the monomeric form of the variants and was equally effective before and after initiation of oxidative events. ApoA-I(Milano) protected phospholipid from reactive oxygen species (ROS) generated via xanthine/xanthine oxidase (X/Xo) but failed to inhibit X/Xo-induced reduction of cytochrome c. These results indicate that apoA-I(Milano) was unable to directly quench ROS in the aqueous phase. There were no differences between lipid-free apoA-I(Milano,) apoA-I(Paris), and apoA-I(WT) in mediating the efflux of cholesterol from macrophages, indicating that the cysteine variants interacted normally with the ABCA1 efflux pathway. The results indicate that incorporation of a free thiol within an amphipathic alpha helix of apoA-I confers an antioxidant activity distinct from that of apoA-I(WT). These studies are the first to relate gain of function to rare cysteine mutations in the apoA-I primary sequence.  相似文献   

10.
11.
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein and is comprised of a helical bundle domain and a C-terminal (CT) domain encompassing the last ~65 amino acid residues of the 243-residue protein. The CT domain contains three putative helices (helix 8, 9, and 10) and is critical for initiating lipid binding and harbors sites that mediate self-association of the lipid-free protein. Three lysine residues reside in helix-8 (K195, 206, 208), and three in helix-10 (K226, 238, 239). To determine the role of each CT lysine residue in apoA-I self-association, single, double and triple lysine to glutamine mutants were engineered via site-directed mutagenesis. Circular dichroism and chemical denaturation analysis revealed all mutants retained their structural integrity. Chemical crosslinking and size-exclusion chromatography showed a small effect on self-association when helix-8 lysine residues were changed into glutamine. In contrast, mutation of the three helix-10 lysine residues resulted in a predominantly monomeric protein and K226 was identified as a critical residue. When helix-10 glutamate residues 223, 234, or 235 were substituted with glutamine, reduced self-association was observed similar to that of the helix-10 lysine variants, suggesting ionic interactions between these residues. Thus, helix-10 is a critical part of apoA-I mediating self-association, and disruption of ionic interactions changes apoA-I from an oligomeric state into a monomer. Since the helix-10 triple mutant solubilized phospholipid vesicles at higher rates compared to wild-type apoA-I, this indicates monomeric apoA-I is more potent in lipid binding, presumably because helix-10 is fully accessible to interact with lipids.  相似文献   

12.
ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69–99% of control by double deletion mutants apoA-I[Δ(1–41)Δ(185–243)] and apoA-I[Δ(1–59)Δ(185–243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.  相似文献   

13.
Five mutants of apolipoprotein A-I (apoA-I), apoA-I(Delta63-73), apoA-I(Delta140-150), apoA-I(63-73@140-150), apoA-I(R149V), and apoA-I(P143A) were compared with human plasma apoA-I for their ability to promote cholesterol and phospholipid efflux from HepG2 cells. A significantly lower capacity to promote cholesterol and phospholipid efflux was observed with lipid-free apoA-I(Delta63-73), while mutations apoA-I(Delta140-150) and apoA-I(P143A) affected phospholipid efflux only. When added as apoA-I/palmitoyloleoyl phosphatidylcholine (POPC) complex, mutations apoA-I(63-73@140-150) and apoA-I(Delta140-150) affected cholesterol efflux. None of the mutations affected alpha-helicity of the lipid-free mutants or their self-association. Five natural mutations of apoA-I, apoA-I(A95D), apoA-I (Y100H), apoA-I(E110K), apoA-I(V156E), and apoA-I (H162Q) were studied for their ability to bind lipids and promote cholesterol efflux. None of the mutations affected lipid-binding properties, cholesterol efflux, or alpha-helicity of lipid-free mutants. Two mutations affected self-association of apoA-I: apoA-I(A95D) was more prone to self-association, while apoA-I(E100H) did not self-associate. The following conclusions could be made from the combined data: i) regions 210-243 and 63-100 are the lipid-binding sites of apoA-I and are also required for the efflux of lipids to lipid-free apoA-I, suggesting that initial lipidation of apoA-I is rate limiting in efflux; ii) in addition to the lipid-binding regions, the central region is important for cholesterol efflux to lipidated apoA-I, suggesting its possible involvement in interaction with cells.  相似文献   

14.
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-S cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a k(cat)/K(M) higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest k(cat)/K(M) of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.  相似文献   

15.
Fang Y  Gursky O  Atkinson D 《Biochemistry》2003,42(22):6881-6890
Apolipoprotein A-I (apoA-I) plays an important structural and functional role in lipid transport and metabolism. This work is focused on the central region of apoA-I (residues 60-183) that is predicted to contain exclusively amphipathic alpha-helices. Six N- and/or C-terminally truncated mutants, delta(1-41), delta(1-59), delta(198-243), delta(209-243), delta(1-41,185-243), and delta(1-59,185-243), were analyzed in their lipid-free state in solution at pH 4.7-7.8 by far- and near-UV CD spectroscopy. At pH 7.8, all mutants show well-defined secondary structures consisting of 40-52% alpha-helix. Comparison of the alpha-helix content in the wild type and mutants suggests that deletion of either the N- or C-terminal region induces helical unfolding elsewhere in the structure, indicating that the terminal regions are important for the integrity of the solution conformation of apoA-I. Near-UV CD spectra indicate significant tertiary and/or quaternary structural changes resulting from deletion of the N-terminal 41 residues. Reduction in pH from 7.8 to 4.7 leads to an increase in the mutant helical content by 5-20% and to a large increase in thermal unfolding cooperativity. Van't Hoff analysis of the mutants at pH 4.7 indicates melting temperatures T(m) ranging from 51 to 59 degrees C and effective enthalpies deltaH(v)(T(m)) = 35 +/- 5 kcal/mol, similar to the values for plasma apoA-I at pH 7.8 (T(m) = 57 degrees C, deltaH(v) = 32 kcal/mol). Our results provide the first report of the pH effects on the secondary, tertiary, and/or quaternary structure of apoA-I variants and indicate the importance of the electrostatic interactions for the solution conformation of apoA-I.  相似文献   

16.
It has been suggested that the signal transduction initiated by apolipoprotein A-I (apoA-I) activates key proteins involved in cholesterol efflux. ABCA1 serves as a binding partner for apoA-I, but its participation in apoA-I-induced signaling remains uncertain. We show that the exposure of human fibroblasts to ABCA1 ligands (apolipoproteins and amphipathic helical peptides) results in the generation of intracellular signals, including activation of the small G-protein Cdc42, protein kinases (PAK-1 and p54JNK), and actin polymerization. ApoA-I-induced signaling was abrogated by glyburide, an inhibitor of the ABC transporter family, and in fibroblasts from patients with Tangier disease, which do not express ABCA1. Conversely, induction of ABCA1 expression with the liver X receptor agonist, T0901317, and the retinoid X receptor agonist, R0264456, potentiated apoA-I-induced signaling. Similar effects were observed in HEK293 cells overexpressing ABCA1-green fluorescent protein (GFP) fusion protein, but not ABCA1-GFP (K939M), which fails to hydrolyze ATP, or a nonfunctional ABCA1-GFP with a truncated C terminus. We further found that Cdc42 coimmunoprecipitates with ABCA1 in ABCA1-GFP-expressing HEK293 cells exposed to apoA-I but not in cells expressing ABCA1 mutants. We conclude that ABCA1 transduces signals from apoA-I by complexing and activating Cdc42 and downstream kinases and, therefore, acts as a full apoA-I receptor.  相似文献   

17.
Previous studies have suggested that the helical repeat formed by residues 143;-164 of apolipoprotein A-I (apoA-I) contributes to lecithin:cholesterol acyltransferase (LCAT) activation. To identify specific polar residues involved in this process, we examined residue conservation and topology of apoA-I from all known species. We observed that the hydrophobic/hydrophilic interface of helix 143;-164 contains a cluster of three strictly conserved arginine residues (R149, R153, and R160), and that these residues create the only significant positive electrostatic potential around apoA-I. To test the importance of R149, R153, and R160 in LCAT activation, we generated a series of mutant proteins. These had fluorescence emission, secondary structure, and lipid-binding properties comparable to those of wild-type apoA-I. Mutation of conserved residues R149, R153, and R160 drastically decreased LCAT activity on lipid-protein complexes, whereas control mutations (E146Q, D150N, D157N, R171Q, and A175R) did not decrease LCAT activity by more than 55%. The markedly decreased activities of mutants R149, R153, and R160 resulted from a decrease in the maximal reaction velocity V(max) because the apparent Michaelis-Menten constant K(m) values were similar for the mutant and wild-type apoA-I proteins.These data suggest that R149, R153, and R160 participate in apoA-I-mediated activation of LCAT, and support the "belt" model for discoidal rHDL. In this model, residues R149, R153, and R160 do not form salt bridges with the antiparallel apoA-I monomer, but instead are pointing toward the surface of the disc, enabling interactions with LCAT. - Roosbeek, S., B. Vanloo, N. Duverger, H. Caster, J. Breyne, I. De Beun, H. Patel, J. Vandekerckhove, C. Shoulders, M. Rosseneu, and F. Peelman. Three arginine residues in apolipoportein A-I are critical for activation of lecithin:cholesterol acyltransferase J. Lipid Res. 2001. 42: 31;-40.  相似文献   

18.
Isoelectric focussing (IEF) in carrier ampholyte-generated pH gradients and hybrid isoelectric focussing (HIEF) in immobilized pH gradients under nondenaturing conditions were used in parallel to screen 5,500 plasma samples for naturally occurring variants of apolipoprotein A-I (apo A-I). The following defects were identified in four unrelated subjects heterozygous for apo A-I variants: apo A-I(K107)(2 ×), apo A-I(K107M)(1 ×), and apo A-I(E41R)(1 ×). The later variant is a novel finding. Family studies did not reveal any association of apo A-I(K107M) and apo A-I(E41R) with dyslipidemia, but identified several heterozygotes for apo A-I(K107) who had low levels of high density lipoprotein (HDL)cholesterol. Therefore, and since the apo A-I(K107) is the most frequent apo A-I variant in Germany (1 5,000) we evaluated our data and that reported from 11 families with 32 heterozygous carriers and 30 unaffected controls. This analysis revealed that apo A-I(K107) is associated with lower HDL-cholesterol (-30%) and higher triglycerides (+ 48%) in men but not in women as compared with unaffected family members as well as with controls from the Prospective Cardiovascular Münster (PROCAM) study. Moreover, 11 of 15 male apo AI(K107) heterozygotes but only 2 of 17 female apo AI(K107) heterozygotes had HDL-cholesterol levels below the 20th percentile of sex-matched controls from the PROCAM study. We conclude that heterozygosity for apo A-I(K107) decreases HDL-cholesterol and increases triglycerides in men but not in women.  相似文献   

19.
We have studied the effects of mutations in apoA-I on reconstituted high density lipoprotein (HDL) particle (rHDL(apoA-I)) binding to and cholesterol efflux from wild-type (WT) and mutant forms of the HDL receptor SR-BI expressed by ldlA-7 cells. Mutations in helix 4 or helix 6 of the apoA-I reduced efflux by 79 and 51%, respectively, without substantially altering receptor binding (apparent K(d) values of 1.1-4.4 microg of protein/ml). SR-BI with an M158R mutation bound poorly to rHDL with WT and helix 4 mutant apoA-I; the helix 6 mutant restored tight binding to SR-BI(M158R) (K(d) values of 48, 60, and 7 microg of protein/ml, respectively). SR-BI(M158R)-mediated cholesterol efflux rates, normalized for binding, were high for all three rHDLs (71-111% of control). In contrast, absolute (12-19%) and binding-corrected (24-47%) efflux rates for all three rHDLs mediated by SR-BI with Q402R/Q418R mutations were very low. We propose that formation of a productive complex between apoA-I in rHDL and SR-BI, in which the lipoprotein and the receptor must either be precisely aligned or have the capacity to undergo appropriate conformational changes, is required for efficient SR-BI-mediated cholesterol efflux. Some mutations in apoA-I and/or SR-BI can result in high affinity, but non-productive, binding that does not permit efficient cholesterol efflux.  相似文献   

20.
The previous studies in our laboratory revealed that seven cysteine mutants of apolipoprotein A-I (apoA-I) have different structural features and biological activities in vitro and in vivo. To investigate the potential cardioprotective effects of apolipoprotein A-I(N74C) [apoA-I(N74C)], we examined the anti-inflammatory, antioxidant, and antiatherosclerotic effects of this cysteine mutant in a rapid atherosclerosis model induced by perivascular carotid collar placement in apoE−/− mice. Lipid-free apoA-I(N74C) showed a significant increased antioxidant potency in low density lipoprotein (LDL) oxidation in vitro and reduced intracellular lipid accumulation in THP-1-derived macrophages, relative to wild-type apoA-I (apoA-Iwt). Mice injected with recombinant HDL (rHDL) reconstituted with apoA-I(N74C) (named rHDL74) through tail veins (40 mg/kg of body weight, three injections) had a significant lower level of serum interleukin-6 (IL-6) and enhanced serum antioxidation compared with mice receiving rHDL reconstituted with apoA-Iwt (named rHDLwt). Moreover, compared with rHDLwt, the rHDL74 in vivo injection resulted in a significant decrease in plaque size, ratio of aorta intima to media, arterial remodeling, and macrophage content in lesions. In summary, intravenous injection with rHDL74 reconstituted with apoA-I cysteine mutant apoA-I (N74C) dramatically delays the development of atherosclerosis induced by perivascular carotid collar placement and reduces vascular remodeling in the carotid artery in apoE−/− mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号