首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The near-isogenic Line TA523, containing a 40-cM introgression at the bottom of chromosome 1 from Lycopersicon hirsutum acc. LA1777, affects several agronomically important traits. A set of recombinant lines (subNILs) derived from the original NIL TA523 were developed in order to fine-map, by substitution mapping, the genetic factors included within the original introgression. In the current experiment, TA523 showed redder, rounded, less pigmented shoulder, lower-weighted fruits and higher brix, whereas higher yield and brix*yield was observed only in the hybrid TA253×TA209 suggesting heterosis for these traits. By substitution mapping we mapped independent genetic loci affecting brix, yield and fruit shape, whereas fruit weight, shoulder pigmentation and external color mapped to a position coincident with the brix locus. Analysis of the subNILs revealed that the gene action of most of the QTLs was additive or nearly additive. The exception was for the yield QTL which was dominant (d/a=0.7), eliminating the possibility that yield increase is due to true overdominance at a single gene locus. However, no negative yield effects were detected in other regions of the introgressed segment, as would be predicted by a dominance complementation model. Therefore, epistatic interactions among genetic factors along the introgressed segment are suggested as the cause of yield heterosis. Results from this study, combined with previous experiments involving different tomato wild species, demonstrate that the base of chromosome 1 of tomato contains multiple QTLs affecting various agronomic and fruit traits and that these effects can not be attributed to the pleiotropic effects of a single locus. Received: 21 April 1999 / Accepted: 17 June 1999  相似文献   

2.
Quantitative trait loci (QTLs) have been mapped to small intervals along the chromosomes of tomato (Lycopersicon esculentum), by a method we call substitution mapping. The size of the interval to which a QTL can be mapped is determined primarily by the number and spacing of previously mapped genetic markers in the region surrounding the QTL. We demonstrate the method using tomato genotypes carrying chromosomal segments from Lycopersicon chmielewskii, a wild relative of tomato with high soluble solids concentration but small fruit and low yield. Different L. chmielewskii chromosomal segments carrying a common restriction fragment length polymorphism were identified, and their regions of overlap determined using all available genetic markers. The effect of these chromosomal segments on soluble solids concentration, fruit mass, yield, and pH, was determined in the field. Many overlapping chromosomal segments had very different phenotypic effects, indicating QTLs affecting the phenotype(s) to lie in intervals of as little as 3 cM by which the segments differed. Some associations between different traits were attributed to close linkage between two or more QTLs, rather than pleiotropic effects of a single QTL: in such cases, recombination should separate desirable QTLs from genes with undesirable effects. The prominence of such trait associations in wide crosses appears partly due to infrequent reciprocal recombination between heterozygous chromosomal segments flanked by homozygous regions. Substitution mapping is particularly applicable to gene introgression from wild to domestic species, and generally useful in narrowing the gap between linkage mapping and physical mapping of QTLs.  相似文献   

3.
A BC(1) population of the self-compatible tomato Lycopersicon esculentum and its wild self-incompatible relative L. hirsutum f. typicum was used for restriction fragment length polymorphism linkage analysis and quantitative trait loci (QTL) mapping of reproductive behavior and floral traits. The self-incompatibility locus, S, on chromosome 1 harbored the only QTL for self-incompatibility indicating that the transition to self-compatibility in the lineage leading to the cultivated tomato was primarily the result of mutations at the S locus. Moreover, the major QTL controlling unilateral incongruity also mapped to the S locus, supporting the hypothesis that self-incompatibility and unilateral incongruity are not independent mechanisms. The mating behavior of near-isogenic lines carrying the L. hirsutum allele for the S locus on chromosome 1 in an otherwise L. esculentum background support these conclusions. The S locus region of chromosome 1 also harbors most major QTL for several floral traits important to pollination biology (e.g., number and size of flowers), suggesting a gene complex controlling both genetic and morphological mechanisms of reproduction control. Similar associations in other flowering plants suggest that such complex may have been conserved since early periods of plant evolution or else reflect a convergent evolutionary process.  相似文献   

4.
Fresh fruit and vegetables are a major source of ascorbic acid (vitamin C), an important antioxidant for the human diet and also for plants. Ascorbic acid content in fruit exhibits a quantitative inheritance. Quantitative trait loci (QTL) for ascorbic acid content have been mapped in three tomato populations derived from crosses between cultivated tomato varieties (Solanum lycopersicum accessions) and three related wild species or subspecies. The first population consists of a set of introgression lines derived from Solanum pennellii, each containing a unique fragment of the wild species genome. The second population is an advanced backcross population derived from a cross between a cultivated tomato and a Solanum habrochaites (formerly Lycopersicum hirsutum) accession. The third population is a recombinant inbred line population derived from the cross between a cherry tomato line and a large fruited line. Common regions controlling ascorbic acid content have been identified on chromosomes 2, 8, 9, 10, and 12. In general, the wild alleles increased ascorbic acid content, but some improvement could also be provided by S. lycopersicum. Most QTLs appeared relatively stable over years and in different environments. Mapping of candidate genes involved in the metabolism of ascorbic acid has revealed a few colocations between genes and QTLs, notably in the case of a monodehydroascorbate reductase gene and a QTL present in two of the populations on chromosome 9 (bin 9-D), and a previously mapped GDP-mannose epimerase and a QTL on chromosome 9 (bin 9-J).  相似文献   

5.
Quantitative trait loci (QTL) mapping is a step towards the identification of factors regulating traits such as fruit ascorbic acid content. A previously identified QTL controlling variations in tomato fruit ascorbic acid has been fine mapped and reveals that the QTL has a polygenic and epistatic architecture. A monodehydroascorbate reductase (MDHAR) allele is a candidate for a proportion of the increase in fruit ascorbic acid content. The MDHAR enzyme is active in different stages of fruit ripening, shows increased activity in the introgression lines containing the wild-type ( Solanum pennellii ) allele, and responds to chilling injury in tomato along with the reduced/oxidized ascorbate ratio. Low temperature storage of different tomato introgression lines with all or part of the QTL for ascorbic acid and with or without the wild MDHAR allele shows that enzyme activity explains 84% of the variation in the reduced ascorbic acid levels of tomato fruit following storage at 4 °C, compared with 38% at harvest under non-stress conditions. A role is indicated for MDHAR in the maintenance of ascorbate levels in fruit under stress conditions. Furthermore, an increased fruit MDHAR activity and a lower oxidation level of the fruit ascorbate pool are correlated with decreased loss of firmness because of chilling injury.  相似文献   

6.
7.
Resistance against both Potato virus Y (PVY) and Tobacco etch virus (TEV) was identified in the wild tomato relative Lycopersicon hirsutum PI247087. Analysis of the segregation ratio in F(2)/F(3) and BC(1) interspecific progenies indicated that a single recessive gene, or two very tightly linked recessive loci, are involved in resistance to both potyviruses. This locus was named pot-1. Using amplified fragment length polymorphism markers and a set of L. hirsutum introgression lines, pot-1 was mapped to the short arm of tomato chromosome 3, in the vicinity of the recessive py-1 locus for resistance to corky root rot. Because of the occurrence of phenotypically similar genes in pepper ( Capsicum spp.), the comparative genetics of resistance to potyviruses between tomato and pepper was investigated. Unlike most of the comparative genetic studies on resistance genes, pot-1 was tightly flanked by the same restriction fragment length polymorphism (RFLP) markers than the pvr2/pvr5 locus for resistance to PVY and TEV from pepper. These results may indicate that recessive resistance genes against potyviruses evolve less rapidly than the majority of the dominant genes cloned so far, and consequently may belong to a different family of resistance genes.  相似文献   

8.
Quantitative trait loci influencing fruit traits were identified by restriction fragment length polymorphism (RFLP) analysis in a population of recombinant inbred lines (RIL) derived from a cross of the cultivated tomato, Lycopersicon esculentum with a related wild species Lycopersicon cheesmanii. One hundred thirty-two polymorphic RFLP loci spaced throughout the tomato genome were scored for 97 F8 RIL families. Fruit weight and soluble solids were measured in replicated trials during 1991 and 1992. Seed weight was measured in 1992. Significant (P<0.01 level) quantitative trait locus (QTL) associations of marker loci were identified for each trait. A total of 73 significant marker locus-trait associations were detected for the three traits measured. Fifty-three of these associations were for fruit weight and soluble solids, many of which involved marker loci signficantly associated with both traits. QTL with large effects on all three traits were detected on chromosome 6. Greater homozygosity at many loci in the RIL population as compared to F2 populations and greater genomic coverage resulted in increased precision in the estimation of QTL effects, and large proportions of the total phenotypic variance were explained by marker class variation at significant marker loci for many traits. The RIL population was effective in detecting and discriminating among QTL for these traits previously identified in other investigations despite skewed segregation ratios at many marker loci. Large additive effects were measured at significant marker loci. Lower fruit weight, higher soluble solids, and lower seed weight were generally associated with RFLP alleles from theL. cheesmanii parent.  相似文献   

9.
Congenic lines that differ in a single defined chromosome segment are useful for the study of complex phenotypes, as they allow isolation of the effect of a particular quantitative trait locus (QTL) from those of the entire genome. We conducted high-resolution QTL mapping of a 9-cM introgression, originating from the wild tomato species Lycopersicon pennellii, in two extremely different genetic and physiological backgrounds. In the "indeterminate" glasshouse background we identified only a single QTL ( Brix9-2-5) that affects the total soluble solids of the fruit [mainly sugars, measured in Brix units (B)]. This QTL was previously delimited within the gene for an apoplastic invertase, Lin5, that modulates sugar partitioning to the fruit. Analysis of the effects of the same chromosome segment in "determinate", open-field tomatoes, revealed two QTLs, 0.3 cM apart: the fruit-specific Brix9-2-5 that affects B only, and the shoot-specific PW9-2-5, which accounts for an altered growth habit resulting in increases in plant weight, yield, and B. This study highlights the power of the congenic approach for dissecting developmental pathways leading to complex phenotypes.  相似文献   

10.
Y. Eshed  D. Zamir 《Genetics》1995,141(3):1147-1162
Methodologies for mapping of genes underlying quantitative traits have advanced considerably but have not been accompanied by a parallel development of new population structures. We present a novel population consisting of 50 introgression lines (ILs) originating from a cross between the green-fruited species Lycopersicon pennellii and the cultivated tomato (cv M82). Each of the lines contains a single homozygous restriction fragment length polymorphism-defined L. pennellii chromosome segment, and together the lines provide complete coverage of the genome and a set of lines nearly isogenic to M82. A field trial of the ILs and their hybrids revealed at least 23 quantitative trait loci (QTL) for total soluble solids content and 18 for fruit mass; these estimates are twice as high as previously reported estimates based on traditional mapping populations. For finer mapping of a QTL affecting fruit mass, the introgressed segment was recombined into smaller fragments that allowed the identification of three linked loci. At least 16 QTL for plant weight, 22 for percentage green fruit weight, 11 for total yield and 14 for total soluble solids yield were identified. Gene action for fruit and plant characteristics was mainly additive, while overdominance (or pseudo-overdominance) of wild species introgressions was detected for yield.  相似文献   

11.
Ari Efrati  Yoram Eyal  Ilan Paran 《Génome》2005,48(2):347-351
The chlorophyll retainer (cl) mutation causes inhibition of chlorophyll degradation during pepper fruit ripening and is controlled by a single recessive gene. The retention of chlorophyll in mature red or yellow fruits produces brown- or green-colored ripe fruits, respectively. We mapped CL on chromosome 1 of pepper corresponding to chromosome 8 in tomato in which a homologous mutation, green flesh, was previously assigned. To test whether known structural genes from the chlorophyll catabolism pathway could correspond to CL, we mapped tomato expressed sequence tag clones corresponding to three loci of CHLOROPHYLLASE and one locus of PHEOPHORBIDE A OXYGENASE in the tomato introgression lines population. The three CHLOROPHYLLASE loci mapped to chromosomes 6, 9, and 12, while PHEOPHORBIDE A OXYGENASE mapped to chromosome 11, indicating that CL may correspond to an as yet unavailable gene from the chlorophyll catabolism pathway or to a regulator of the pathway.  相似文献   

12.
李玲  冯学超  赵凌侠 《植物研究》2018,38(5):790-794
番茄(Solanum lycopersicum)是全球第一大经济作物,其品质倍受科学家和消费者关注,果色和硬度是决定番茄品质的重要经济性状。为了解析YFT1(YELLOW FRUIT TOMATO1)调控番茄果色发育和硬度形成机制,本文对野生型cv.M82和突变体yft1的果色、硬度和果皮显微结构进行了比较分析。结果显示,在35 dpa(days post anthesis),yft1和cv.M82番茄果色、硬度、果皮细胞大小和形状无明显差异。随着果实发育cv.M82番茄由绿色转为橙色/浅红(47 dpa)和红色(54 dpa);并由硬变软,54 dpa的果实硬度(13.68±1.78N)仅相当于35 dpa的(35.51±1.09N)1/3。同时,从转色期(47 dpa)果皮细胞由内向外逐渐变大;内果皮薄壁细胞由圆形(35 dpa)依次变成卵形(47 dpa)和不规则形(54 dpa),并观察到了细胞内陷和胞间空隙消失(54 dpa)。与cv.M82不同,yft1番茄的果色、硬度和果皮细胞显微结构随果实发育(35~54 dpa)变化不明显;而其果实硬度(47~54 dpa)显著高于cv.M82。这些结果均暗示YFT1突变使番茄果实发育延迟,并影响了果色发育和硬度的形成。该研究将为番茄果色发育和果色形成机制的揭示提供重要的表型证据。  相似文献   

13.
As part of ongoing studies regarding the genetic basis of quantitative variation in phenotype, we have determined the chromosomal locations of quantitative trait loci (QTLs) affecting fruit size, soluble solids concentration, and pH, in a cross between the domestic tomato (Lycopersicon esculentum Mill.) and a closely-related wild species, L. cheesmanii. Using a RFLP map of the tomato genome, we compared the inheritance patterns of polymorphisms in 350 F2 individuals with phenotypes scored in three different ways: (1) from the F2 progeny themselves, grown near Davis, California; (2) from F3 families obtained by selfing each F2 individual, grown near Gilroy, California (F3-CA); and (3) from equivalent F3 families grown near Rehovot, Israel (F3-IS). Maximum likelihood methods were used to estimate the approximate chromosomal locations, phenotypic effects (both additive effects and dominance deviations), and gene action of QTLs underlying phenotypic variation in each of these three environments. A total of 29 putative QTLs were detected in the three environments. These QTLs were distributed over 11 of the 12 chromosomes, accounted for 4.7-42.0% of the phenotypic variance in a trait, and showed different types of gene action. Among these 29 QTLs, 4 were detected in all three environments, 10 in two environments, and 15 in only a single environment. The two California environments were most similar, sharing 11/25 (44%) QTLs, while the Israel environment was quite different, sharing 7/20 (35%) and 5/26 (19%) QTLs with the respective California environments. One major goal of QTL mapping is to predict, with maximum accuracy, which individuals will produce progeny showing particular phenotypes. Traditionally, the phenotype of an individual alone has been used to predict the phenotype of its progeny. Our results suggested that, for a trait with low heritability (soluble solids), the phenotype of F3 progeny could be predicted more accurately from the genotype of the F2 parent at QTLs than from the phenotype of the F2 individual. For a trait with intermediate heritability (fruit pH), QTL genotype and observed phenotype were about equally effective at predicting progeny phenotype. For a trait with high heritability (mass per fruit), knowing the QTL genotype of an individual added little if any predictive value, to simply knowing the phenotype. The QTLs mapped in the L. esculentum X L. cheesmanii F2 appear to be at similar locations to many of those mapped in a previous cross with a different wild tomato (L. chmielewskii).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The efficiency of marker-assisted backcross for the introgression of a quantitative trait locus (QTL) from a donor line into a recipient line depends on the stability of QTL expression. QTLs for six quality traits in tomato (fruit weight, firmness, locule number, soluble solid content, sugar content and titratable acidity) were studied in order to investigate their individual effect and their stability over years, generations and genetic backgrounds. Five chromosome regions carrying fruit quality QTLs were transferred following a marker-assisted backcross scheme from a cherry tomato line into three modern lines with larger fruits. Three sets of genotypes corresponding to three generations were compared: (1) an RIL population, which contained 50% of each parental genome, (2) three BC3S1 populations which segregated simultaneously for the five regions of interest but were almost fully homozygous for the recipient genome on the eight chromosomes carrying no QTL and (3) three sets of QTL-NILs (BC3S3 lines) which differed from the recipient line only in one of the five regions. QTL detection was performed in each generation, in each genetic background and during 2 successive years for QTL-NILs. About half of the QTLs detected in QTL-NILs were detected in both years. Eight of the ten QTLs detected in RILs were recovered in the QTL-NILs with the genetic background used for the initial QTL mapping experiment, with the exception of two QTLs for fruit firmness. Several new QTLs were detected. In the two other genetic backgrounds, the number of QTLs in common with the RILs was lower, but several new QTLs were also detected in advanced generations.  相似文献   

15.
Quantitative Trait Locus (QTL) allelic variation was studied by analyzing near-isogenic lines (NILs) carrying homologous introgressions on chromosome 4 from three green-fruited wild tomato species. The NILs affect agronomic (yield, brix, fruit weight) and fruit (fruit shape, color, epidermal reticulation) traits in a similar manner. However, significant differences were detected in the magnitudes of the effects, the dominance deviations and epistatic interactions, indicating that those species carry different alleles for the QTL. As the QTL did not show any interaction across environments, gene-tic backgrounds or other QTLs, it can be used to introduce novel genetic variation into a broad range of cultivars. Analysis of new recombinant NILs showed that fruit traits are controlled by several linked genetic loci, whereas multiple genetic loci control the agronomic traits within the original introgression. The hypothesis that QTLs may be composed of multiple linked genes can not be rejected prior to implement projects for QTL isolation and cloning. Loci involved in color enhancement could not be related to any known gene involved in the carotenoid biosynthesis pathway, therefore it is hypothesized that the function of those loci must be related to the genetic regulation of the carotenoid biosynthetic pathway. Received: 14 April 2000 / Accepted: 12 May 2000  相似文献   

16.
RFLP-defined chromosome segments covering the entire tomato genome were introgressed from the wild green-fruited speciesLycopersicon pennellii into the cultivated tomato (L. esculentum cv M82; Eshed et al. 1992). SixL. pennellii chromosome segments were selected for a detailed evaluation based on previous observations of their effects on the two yield components, fresh tomato yield and total soluble-solids content (Brix). Differences in the quantitative traits measured between M82 and the introgression lines, or their hybrids with different inbred parents, can be attributed to the alien chromosome segments. Replicated field trials, grown at wide and dense spacing, identified three quantitative trait loci (QTLs) for solublesolids content on chromosomes 1, 5 and 7. In plants heterozygous for the chromosome-5 locus there was a 50% increase in soluble-solids yield in wide but not in dense spacing. Plants heterozygous for the chromosome-1 QTL/s were tested over a 2-year period, in three genetic backgrounds, and showed a significant 16% elevation in soluble-solids yield only in dense spacing. These results demonstrate that wild tomato germplasm can be used to improve the yield of the cultivated crop.  相似文献   

17.
We have shown that a major QTL for fruit weight (fw2.2) maps to the same position on chromosome 2 in the green-fruited wild tomato species, Lycopersicon pennellii and in the red-fruited wild tomato species, L. pimpinellifolium. An introgression line F2 derived from L. esculentum (tomato) x L. pennellii and a backcross 1 (BC1) population derived from L. esculentum x L. pimpinellifolium both place fw2.2 near TG91 and TG167 on chromosome 2 of the tomato highdensity linkage map. fw2.2 accounts for 30% and 47% of the total phenotypic variance in the L. pimpinellifolium and L. pennellii populations, respectively, indicating that this is a major QTL controlling fruit weight in both species. Partial dominance (d/a of 0.44) was observed for the L. pennellii allele of fw 2.2 as compared with the L. esculentum allele. A QTL with very similar phenotypic affects and gene action has also been identified and mapped to the same chromosomal region in other wild tomato accessions: L. cheesmanii and L. pimpinellifolium. Together, these data suggest that fw2.2 represents an orthologous QTL (i.e., derived by speciation as opposed to duplication) common to most, if not all, wild tomato species. High-resolution mapping may ultimately lead to the cloning of this key locus controlling fruit development in tomato.  相似文献   

18.
fs3.1 is a major fruit shape (defined as the ratio of fruit length to fruit width) quantitative trait locus (QTL) originally detected in an intraspecific cross of Capsicum annuum between the blocky and elongated-fruited inbreds 'Maor' and 'Perennial', respectively. In addition to increasing fruit shape index, the 'Perennial' allele at fs3.1 increased fruit elongation and decreased fruit width and pericarp thickness. We verified the effect of fs3.1 in backcross inbred lines (BILs) derived from crossing 'Perennial' with 'Maor' and with a second blocky-type inbred line of C. annuum. To determine the effect of the fs3.1 region in additional Capsicum species, we constructed an advanced backcross population from the cross of 'Maor' and the oval-fruited Capsicum frutescens BG 2816 and an F2 of the introgression line IL 152 that contains an introgression of the fs3.1 region from Capsicum chinense PI 152225. QTLs for fruit shape, fruit width, and pericarp thickness, but not for fruit length, were detected in both crosses, indicating the conservation of the fs3.1 region as a QTL affecting fruit shape in pepper. We also tested tomato (Lycopersicon spp.) introgression lines containing the corresponding fs3.1 region from L. pennellii and L. hirsutum, but we did not detect a significant fruit shape QTL in these lines. The effect of fs3.1 on the growth of fruit dimensions varied with the genetic background. By measuring the length and width of ovaries and fruits of near-isogenic C. annuum lines that differ in fs3.1 during fruit development, we determined that fs3.1 controls shape predominantly by increasing the growth rate of the longitudinal axis in the first 2 weeks after pollination. However, in the crosses of C. annuum with C. frutescens and C. chinense, fs3.1 predominantly exerted its effect on the width dimension.  相似文献   

19.
Resolving natural phenotypic variation into genetic and molecular components is a major objective in biology. Over the past decade, tomato interspecific introgression lines (ILs), each carrying a single 'exotic' chromosome segment from a wild species, have exposed thousands of quantitative trait loci (QTL) affecting plant adaptation, morphology, yield, metabolism, and gene expression. QTL for fruit size and sugar composition were isolated by map-based cloning, while others were successfully implemented in marker-assisted breeding programs. More recently, integrating the multitude of IL-QTL into a single database has unraveled some unifying principles about the architecture of complex traits in plants.  相似文献   

20.
Improving organoleptic quality is an important but complex goal for fresh market tomato breeders. A total of 26 traits involved in organoleptic quality variation were evaluated, in order to understand the genetic control of this characteristic. A recombinant inbred line (RIL) population was developed from an intraspecific cross between a cherry tomato line with a good overall aroma intensity and an inbred line with a common taste but with bigger fruits. Physical traits included fruit weight, diameter, color (L,a,b), firmness and elasticity. Chemical traits were dry matter weight, titratable acidity, pH, and the contents of soluble solids, sugars, lycopene, carotene and 12 aroma volatiles. RILs showed a large range of variation for most of the traits and many of them were transgressive. Some correlations between aroma volatiles were in accordance with the metabolic pathway they originated from. A total of 81 significant QTLs were detected for the 26 traits by simple and composite interval mapping. They were mainly distributed in a few regions on chromosomes 2, 3, 4, 8, 9, 11 and 12. Major QTLs (R2>30%) were detected for fruit weight, diameter, and color, and for six aroma volatiles. Co-localization of QTLs controlling correlated traits was mainly found on chromosome 2. QTLs for fruit weight and sugar content or dry matter weight were often co-localized. However, a QTL for soluble-solids content and dry matter weight have been detected on chromosome 9 in a region without fruit weight QTLs. QTLs for seven aroma volatiles, lycopene content and fruit color were also co-localized. The QTL localizations were compared with those detected in crosses between Lycopersicon esculentum and wild tomato species. Received: 19 January 2000 / Accepted: 26 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号