首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Half leaves of N. tabacum dipped into a 0.2 % emulsion of meneral oil 15min after inoculation with tabacco masaic virus (TMV) developed significantly fewer lesion than when not dipped Dipping reduced lesion numbers when applied up to 2½ h after inoculation and multiple dippings were more effective than one. The effect of oil was the same whether the inoculum was whole virus or RNA. Tobacco protoplasts treated with mineral oil contained less virus than untreated protoplasts. The oil probably acted by killing the protoplasts and was effective only when protoplasts were centrifuged through the oil emulsion, When water-treated leaves were dipped into a TMV solution there was an effect on TMV infection similar to that caused by dipping in oil after TMV inoculation.  相似文献   

2.
The incorporation of labeled precursors into RNAs and proteins of isolated tobacco (Nicotiana tabacum L.) leaf protoplasts decreases with increasing osmotic pressure in the incubation medium. The incorporation of precursors into RNA and proteins is linear for 15–18 h after the isolation of the protoplasts, irrespective of the osmolarity of the culture media. The uptake of precursors is also affected by the osmolarity of the medium. However, the osmotic stress-induced inhibition of incorporation of precursors into RNA and proteins is also apparent if the differences in uptake are taken into consideration in the calculation. Incorporation of 32P into TMV-RNA is also inhibited by osmotic stress. As assayed by the double labeling ratio technique, osmotic stress has less unequivocal effect on TMV protein synthesis.Abbreviations PP protoplast - RNase ribonuclease - rRNA ribosomal ribonucleic acid - SDS sodium dodecyl sulfate - SSC 0.1 M Na-acetate in 0.15 M NaCl - TCA trichloroacetic acid - TMV tobacco mosaic virus  相似文献   

3.
The low molecular weight tobacco mosaic virus (TMV)-specific RNA component (LMC) was demonstrated in tobacco mesophyll protoplasts by polyacrylamide gel electrophoresis of 14C-uridine-labelled RNA from infected protoplasts. Free and membrane-bound polysomes were isolated from infected protoplasts, and RNA extracted from them was analyzed. TMV-specific RNA species including full-length viral RNA, its replicative intermediate, and LMC were found in both free and membrane-bound polysomes, but were present in free polysomes in much larger amounts. In particular, as much as 37 % of total LMC in protoplasts was found in free polysomes. Fractionation of polysomes by sedimentation in sucrose gradients showed that LMC is associated with small-sized polysomes (mono- to tetrasomes). Polysomes of this size class produced viral coat protein in a cell-free protein synthesizing system from rabbit reticulocytes. On the other hand, full-length TMV-RNA was associated predominantly with larger polysomes which produced in the cell-free system TMV-specific high molecular weight polypeptides but no coat protein. These results indicated that LMC, a subgenomic RNA of TMV, in fact functions in vivo as messenger RNA for viral coat protein, as has been postulated on the basis of in vitro studies.  相似文献   

4.
One striking feature of viruses with RNA genomes is the modification of the host membrane structure during early infection. This process requires both virus- and host-encoded proteins; however, the host factors involved and their role in this process remain largely unknown. On infection with Tobacco mosaic virus (TMV), a positive-strand RNA virus, the filamentous and tubular endoplasmic reticulum (ER) converts to aggregations at the early stage and returns to filamentous at the late infectious stage, termed the ER transition. Also, membrane- or vesicle-packaged viral replication complexes (VRCs) are induced early during infection. We used microarray assays to screen the Arabidopsis thaliana gene(s) responding to infection with TMV in the initial infection stage and identified an Arabidopsis gene, PAP85 (annotated as a vicilin-like seed storage protein), with upregulated expression during 0.5 to 6 h of TMV infection. TMV accumulation was reduced in pap85-RNA interference (RNAi) Arabidopsis and restored to wild-type levels when PAP85 was overexpressed in pap85-RNAi Arabidopsis. We did not observe the ER transition in TMV-infected PAP85-knockdown Arabidopsis protoplasts. In addition, TMV accumulation was reduced in PAP85-knockdown protoplasts. VRC accumulation was reduced, but not significantly (P = 0.06), in PAP85-knockdown protoplasts. Coexpression of PAP85 and the TMV main replicase (P126), but not their expression alone in Arabidopsis protoplasts, could induce ER aggregations.  相似文献   

5.
Effect of the benzothiodiazole (BTH) pre-treatment was monitored during the acute infection stage in the susceptible and the hypersensitive tobacco plants infected with the tobacco mosaic virus (TMV). Dynamic changes in the contents of chlorophyll, the total proteins, and the pathogenesis related proteins (PR-proteins), and activities of ribonucleases (RNase), phosphomonoesterase (PME), phosphodiesterase (PDE), and glucose-6-phosphate dehydrogenase (G6P DH) were studied. Neither the protein nor the chlorophyll contents were significantly changed by the TMV infection and/or the BTH treatment. The BTH pre-treatment caused a substantial reduction in the multiplication of TMV in the locally-infected leaves of the hypersensitive cultivar Xanthi-nc (to 15.1%). A lesser decrease (to 50.3%) was observed in the locally-infected leaves of susceptible cultivar Samsun. But in the systemically-infected leaves of this cultivar, only a 4-d delay in the multiplication of TMV was found. In the locally-infected leaves of both cultivars, the activities of the RNase, PME, PDE and G6P DH were sharply increased during the acute phase of TMV multiplication (when compared with the healthy plants) and the curves of these activities correlated with the multiplication curves of TMV. The BTH alone also strongly enhanced the activities of these enzymes early after application. Only low additional increases in some enzymes and even slight declines in the others were observed when the inoculation of leaves of cultivar Xanthi-nc followed the pre-treatment with the BTH. No inhibition of the enzymes was observed when the direct effect of different concentration of the BTH (1 – 1000 M) was examined in vitro during a measurement of the activity. The analysis of intercellular proteins by PAGE under native conditions shows the similar spectrum of the proteins extracted from either the BTH-treated or the TMV-infected tobacco cv. Xanthi-nc.  相似文献   

6.
Combined action of polyornithine and lecithin modified tobacco mosaic virus (TMV) virions making them sensitive to ribonuclease (RNase), pronase or Triton X-100. Sedimentational analysis and examination of the fluorescence spectrum revealed that the reaction product obtained after RNase treatment of modified TMV was a three-component complex made of coat protein, polyornithine and lecithin. The minimum requirement for the modification was completely fulfilled by cetyltrimethylammonium bromide, suggesting that a positively charged nitrogen group and an alkyl group of moderate size, C10–18, are necessary components. These components react with the surface region of TMV which is considered to have an important role in connecting coat protein subunits in TMV virions.  相似文献   

7.
Infectious material was formed at an early stage, and migrated into the mesophyll from the epidermis of tobacco leaves (Nicotiana tabacum cv. Samsun NN) during the period of 1 to 3 hours after inoculation with tobacco mosaic virus (TMV). The activity of membrane-bound Mg2+-activated ATPase from the mesophyll was stimulated two to four times within 30 minutes after inoculation with 1.0 microgram per milliliter of TMV. Maximum TMV stimulation of membrane-bound Mg2+-activated ATPase activity in epidermis and mesophyll was observed at 0.5 and 3.0 hours after inoculation, respectively. This stimulation was also observed with ultraviolet irradiated TMV (only RNA was destroyed), whereas, the stimulation was not observed with heat-irradiated TMV (both coat and RNA were destroyed). Stimulation equal to that of TMV was observed by inoculation with cucumber green mottle mosaic virus and to a lesser extent with cucumber mosaic virus.

These results illustrate that the stimulus resulting from inoculation with TMV transfers to underlying cells faster than the migration of TMV particles. This stimulus might be closely correlated to the structure of virus, but not to the infectivity of virus.

  相似文献   

8.
Diminutive viral RNAs recovered from tobacco leaves inoculated with 32P-TMV were investigated. At 3.5 hr after inoculation, most of the viral RNA without coat protein revealed two peaks after sucrose density gradient analysis of SDS-extract from 12,000 × g leaf pellet. The first peak appeared between bacterial ribosomal RNA of 16 S and 5 S and the second peak was around 5 S. These two peaks were digestible with RNase and they appeared as early as 5 min after inoculation. These diminutive RNAs seemed to be derived from partially uncoated parental virus by abscission of their naked RNA tails. The active formation of these diminutive RNAs and their early appearance after inoculation seemed to indicate that most of the inoculated TMV received incomplete uncoating.  相似文献   

9.
Kano  Hiromi 《Plant & cell physiology》1985,26(7):1241-1249
The multiplication rate of tobacco mosaic virus (TMV) in tobaccoprotoplasts in light was several times than in the dark. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea(DCMU) at 10–5M completely antagonized this illuminationeffect. KCN at 10–4 M and antimycin A at 10–5 M,which prevented the protoplasts from surviving in the dark,did not block TMV multiplication in light. Inhibitor experimentsshowed that photosynthesis and respiration were indirectly associatedwith the TMV multiplication. Either of them was found to benecessary for TMV multiplication but neither was indispensable.They play complementary roles in the supply of energy and materialsrequired for virus production. (Received August 2, 1984; Accepted July 9, 1985)  相似文献   

10.
Effects of virus inhibitors on the infection of tobacco protoplasts with tobacco mosaic virus Yeast extract inhibits the infection of Nicotiana glutinosa plants with tobacco mosaic virus (TMV), whereas in N. sandérae yeast extract is not effective. This phenomena was compared with the effect of yeast extract on protoplasts, and on the infection of protoplasts of both tobacco species with TMV. Additionally, skim milk and ribonuclease were included in the experiments as further inhibitors of early stages of virus infection. It was examined whether these inhibitors damage non-inoculated protoplasts (a), and whether they affect virus infections in protoplasts as they do in cells of intact plants (b). To investigate protoplast damage by the inhibitors, conductivity measurements of protoplast suspensions containing inhibitors, and the ability of protoplasts for cell wall regeneration after treatment with the inhibitors, were used. Inhibitor concentrations which prevent virus infections in plants did not damage the protoplasts. The inhibitor effect on the course of infection was investigated by protoplast treatments before, during and after inoculation with TMV, and by addition of the substances to the culture medium. Measurements of virus content in protoplasts after cultivation revealed different results for the three inhibitors, however, there was no difference in the response of protoplasts from the two tobacco species to yeast extract. It is concluded that there are principal differences between the inhibition of plant and protoplast infections. Therefore, it is unlikely that protoplasts are a useful system for the mode of action studies on inhibitors of early stages of virus infection in plants.  相似文献   

11.
Mitochondria isolated from tobacco leaves incorporated 14C-leucine into the protein and the rate was enhanced by tobacco mosaic virus (TMV) infection as compared with noninfected level. In vitro amino acid incorporation by mitochondria required adenosine triphosphate (ATP), Mg2+, and KC1 and the energy sources from oxidative phosphorylation as well as from ATP-generating system. This incorporation was inhibited by ribonuclease (RNase), deoxyribonuclease (DNase), actinomycin D, mitomycin C, puromycin, and chloramphenicol added in the reaction medium. The pretreatment of the mitochondria with DNase and actinomycin D reduced the rate of incorporation. The mitochondria incorporated 3H-guanosine triphosphate (GTP) and this activity was blocked by actinomycin D. The presence in this system of 15,000 g supernatant cell sap fraction or bacterial contamination was carefully checked obtaining a negative result. The reaction product into which l4C-amino acids incorporated was solubilized by trypsin. The nature of the amino acid incorporating activity of isolated mitochondria obtained from TMV-infected tobacco leaves is discussed.  相似文献   

12.
The plasma membrane of Avena coleoptile protoplasts   总被引:3,自引:3,他引:0       下载免费PDF全文
Treatment of living protoplasts from the Avena coleoptile with enzymes and chemicals has provided new information about the external surface of the plasma membrane. Treatments with selected detergents and polyene antibiotics indicate that little sterol is present. The lysis of protoplasts in carboxymethyl-RNase which is enzymatically almost inactive provides strong evidence that the lysis previously observed in RNase is not an indication of RNA in the membrane. Divalent cations inhibit the RNase-induced lysis, indicating that such lysis involves the interaction of RNase with negatively charged sites on the plasma membrane surface. Tyrosinase treatment gives no lysis, showing that tyrosine does not play the role in these plasma membranes attributed to it in some animal cells. Peroxidase does not harm coleoptile protoplasts.  相似文献   

13.
根据对TMV高效复制和基因表达的顺式作用元件的分析,在体外重组包装了2个缺失型TMV粒子:TMVRP和TMVCP。前者缺失了TMV外壳蛋白CP基因的3′端及后序区域,后者缺失了大部分复制酶基因。把两者分别或共同电击感染烟草原生质体:1.用CP抗体进行免疫印渍检测,单独感染的原生质体内的CP在16小时内无增加,而在共同感染的原生质体内,CP在感染2小时后就开始明显增加。2.用RT一两次PCR法专一地检测新生负链RNA的合成情况,在单独感染的原生质体内没有检测到,但在混合感染的原生质体内在感染1小时后就检测到CP基因特异的负链RNA的形成,并用Southern杂交得到进一步验证。这些结果表明,复制酶缺失型TMVCP内的CP基因不能表达,但可以在TMVRP存在时,通过其所表达的复制酶互补作用得到复制从而有效表达.  相似文献   

14.
The effects of arachidonic acid (AA) on the development of viral infection and the activity of phytohemagglutinins in Nicotiana tabacum L. plants were studied. Cv. Samsun NN was used, which displayed a genotypically determined hypersensitive response to tobacco mosaic virus (TMV) infection. When tobacco leaf disks were treated with 10–9 to –10–7 M AA, viral reproduction was suppressed by 90–100%. The AA concentration of 10–8 M was optimal for the improvement of plant virus resistance. Tobacco leaves maintained virus resistance for at least two weeks. Both AA treatment and TMV inoculation were accompanied by an enhanced lectin activity, which may indicate the involvement of lectins in the development of plant defense responses. Lectin accumulation was observed in the intact plants developing systemic resistance and in the detached leaves characterized by local resistance.  相似文献   

15.
Materials which can adsorb tobacco mosaic virus (TMV) were isolated from tobacco leaves and studied for applicability as a model system for TMV adsorption. Leaves were homogenized and fractionated by sucrose density gradient centrifugation. One fraction adsorbed TMV in the presence of polyornithine. Deduced from its sensitivity to trypsin and detergent as well as from its manner of isolation, the material responsible for adsorption of TMV seemed to be cytoplasmic membrane. Membrane derived from light particulate, as well as cytoplasmic membrane, seemed to be capable of adsorbing TMV. Shorter rods obtained by sodium dodecyl sulfate or sonic treatment of TMV could adsorb to membrane as efficiently as TMV. Viral protein subunit could not adsorb whereas helical rods made of viral protein aggregates could. A two-step nature of the adsorption of TMV was suggested: a salt-sensitive and a subsequent salt-resistant steps. In the first step, ionic bonding plays a main role in the combination between TMV and membrane. Adsorption of 14C-labeled TMV was inhibited by an excess amount of non-labeled TMV or cucumber green mottle mosaic virus but not by potato virus X or rice dwarf virus, suggesting the specific nature of adsorption. In contrast to the observed specificity on the part of virus, a membrane fraction isolated from various plants, including non-hosts for TMV, could adsorb TMV. This may imply that adsorption and injection are not the determinant of host specificity in plant viral infection.  相似文献   

16.
Incubation of excised Avena leaves in a wet chamber in darkness resulted in an increase in both soluble and particle-bound Rnase activities. Illumination promoted the increase in the total RNase which occurred upon leaf excision. The light-induced increase in total RNase was due to an increase in soluble RNase. The increase in RNase activity in the particulate fraction was inhibited by illumination. Feeding 2 per cent sucrose to the tissues in the dark increased the level of soluble RNase and decreased the activity found in the particulate fraction. Treatment of the illuminated tissues with 10?4M dichlorophenyldimethylurea (DCMU) inhibited the effects of light on the RNase level. It is concluded that the light-effect is explained at least in part by the photosynthetic production of sugars. In excised leaves kept in darkness the RNA content rapidly decreased. Feeding sugars to or illumination of the tissues lowered the rate of RNA breakdown due to leaf excision. DCMU counteracted the light effect. In general, the decrease of RNA was repressed by all treatments leading to an inhibition of the increase of particulate RNase. On the other hand, the observed changes of the soluble RNase were not related with the variations of RNA. Treatment with 3 M urea increased the RNase activity both in the particulate and the soluble fractions. The RNase activity of soluble preparations, partially purified on a Sephadex G-50 column or by (NH4)2SO4 fractionation, was also stimulated by 3 M urea. Treatment with 10?5M kinetin repressed the increase in RNase activity due to leaf excision both in the soluble and the particulate fractions.  相似文献   

17.
Macrae WD  Yoder OC 《Plant physiology》1987,84(4):1257-1264
Ferric ion reduced the damaging effects of T-toxin, a series of linear β-polyketols produced by the pathogenic fungus Cochliobolus heterostrophus, on leaf mesophyll protoplasts from susceptible T-cytoplasm corn. Of nine metals tested, only ferric and ferrous ions had this effect. Despite the presence of 12 available oxygen atoms in each T-toxin molecule, there was no evidence for the formation of an aqueous Fe2+- or Fe3+-T-toxin complex. The protective effect of iron was eliminated by a molar excess of EDTA. Iron had no effect on the sensitivity of T-cytoplasm mitochondria to T-toxin, even at a 1000-fold molar excess, nor did it protect roots of T-cytoplasm corn seedlings from inhibition by T-toxin. The mechanism by which iron specifically protects protoplasts from T-toxin is not understood, but time lapse experiments suggest that iron acts on some intracellular site to modify T-toxin sensitivity and not on a transport system at the cell surface.  相似文献   

18.
Tobacco leaf discs, infected with tobacco mosaic virus (TMV), were floated on Vickery's solution and kept under N2 in the light, conditions where the only source of ATP was assumed to be cyclic photophosphorylation. Usually the virus content was unaltered or decreased during the next 24 hours; occasionally there was some TMV formation, but less than in air and light, and it was abolished by 10?5 M DCMU. This suggested that ATP produced by cyclic photophosphorylation was not used in TMV formation. Infected discs exposed to N2 for longer than 2 hours formed less virus when transferred to air and light than discs not exposed to N2, presumably because some breakdown in the TMV-forming apparatus occurred in ATP deficient conditions.  相似文献   

19.
The Rx1 gene in potato confers extreme resistance to potato virus X (PVX). To investigate the mechanism and elicitation of Rx resistance, protoplasts of potato cv. Cara (Rx1 genotype) and Maris Bard (rx1 genotype) were inoculated with PVX and tobacco mosaic virus (TMV). At 24 h post-inoculation in Maris Bard protoplasts there was at least 100-fold more PVX RNA than in protoplasts of Cara. TMV RNA accumulated to the same level in both types of protoplast. However, when the TMV was inoculated together with PVX the accumulation of TMV RNA was suppressed in the Cara (Rx1 genotype) protoplasts to the same extent as PVX. The Rx1 resistance also suppressed accumulation of a recombinant TMV in which the coat protein gene was replaced with the coat protein gene of PVX. It is therefore concluded that Rx1-mediated resistance is elicited by the PVX coat protein, independently of any other proteins encoded by PVX. The domain of the coat protein with elicitor activity was localized by deletion and mutation analysis to the structural core of a non-virion form of the coat protein.  相似文献   

20.
Dibasic amino acids and polyamines added to oat (Avena sativa L.) leaf protoplast isolation media decrease the RNase activity of extracted protoplasts relative to controls. This effect, which is manifested even when the added polyamine is removed by exhaustive dialysis prior to assay, is due to a prevention of the rise in RNase activity which usually follows protoplast isolation. Polyamines, but not dibasic amino acids, also decrease RNase activity in vitro. This in vitro effect seems to result from electrovalent attachment of the polyamine to the RNA, because the greater the net positive charge on the polyamine, the greater is its inhibitory effect in vitro. The activity of dibasic amino acids when added during protoplast isolation probably results from their conversion to polyamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号