首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
The yeast S. cerevisiae cell wall comprising a 10 nm thick layer of polysaccharides, predominantly beta(1,3)-glucan and proteins, is the interface between the cell and the neighbouring environment. As such it is not a static entity but rather one that is dynamically remodelled in response to changes in the environmental conditions. We have recently proposed from studies using yeast cells lacking the gene encoding Hsp12p (Deltahsp12 yeast) and from incorporation of Hsp12p into agarose, used as a model system for the beta-glucan layer of the cell wall, that the hydrophilic stress response cell wall protein Hsp12p acts as a cell wall plasticizer. In this report we have used force spectroscopy to confirm that Deltahsp12 yeast are indeed less flexible than the wild type strain. The spring constant of the cell wall of Deltahsp12 yeast, kcw was determined to be 72+/-3 mN m-1 as compared to 17+/-5 mN m-1 obtained for the wild type strain. A similar result was found on the basis of a quantitative analysis of the electrophoretic mobilities measured for the two yeast strains. Those indicated that the hydrodynamic permeability quantified through the softness parameter of the external layer of Deltahsp12 cells was smaller than the one of wild type cells. We proposed from surface infrared spectroscopy measurements that yeast compensate for the lack of Hsp12p by reducing the carbohydrate/proteins ratio of the cell wall or increasing the cell wall chitin content.  相似文献   

2.
Yeast cells encounter a variety of environmental stresses during brewing and must respond to ensure cell survival. Cells can respond to stress by inducing a Heat Shock Response in which heat shock proteins (Hsps) are synthesized. In laboratory strains of Saccharomyces cerevisiae, the heat shock protein, Hsp104, plays a major role in the acquisition of tolerance to a variety of stresses such as heat, ethanol and sodium arsenite, and as such acts as an excellent stress indicator. The induction of Hsp104 in bottom-and top-fermenting brewery strains was examined when grown under laboratory and industrial fermentation conditions, and it was found that each brewing strain exhibits its own unique pattern of Hsp104 expression. During industrial fermentations, brewery strains are capable of mounting a stress response at the early stages of fermentation. However, as the fermentation proceeds, the response is repressed. The results suggest that conditions experienced in industrial brewing prevent the activation of the stress response. This study increases our understanding of alterations in gene expression patterns during the brewing process, and yields information that will aid in the definition of best practice in yeast management.  相似文献   

3.
The effect of HSP12 deletion on the response of yeast to desiccation was investigated. The Deltahsp12 strain was found to be more desiccation tolerant than the wild-type strain. Furthermore, the increased intracellular trehalose levels in the Deltahsp12 strain suggested that this strain compensated for the lack of Hsp12p synthesis by increasing trehalose synthesis, which facilitated increased desiccation tolerance. Results obtained from flow cytometry using the membrane exclusion dye propidium iodide suggested that Hsp12p helped maintain plasma membrane integrity during desiccation. Analysis of the oxidative loads experienced by the wild-type and Deltahsp12 strains showed that during mid-exponential phase, the increased trehalose levels present in the Deltahsp12 cells resulted in increased protection of these cells against reactive oxygen species compared with wild-type cells. During stationary phase, lower levels of reactive oxygen species reduction by reduced glutathione was enhanced in the wild-type strain, which displayed lower intracellular trehalose concentrations. Comparison of the tolerance of the wild-type and Deltahsp12 strains with applied oxidative stress showed that the Deltahsp12 strain was more tolerant to exogenously applied H2O2, which we attributed to the higher intracellular trehalose concentration. Flow cytometry demonstrated that Hsp12p played a role in maintaining plasma membrane integrity during applied oxidative stress.  相似文献   

4.
5.
The HSP30 gene of the budding yeast Saccharomyces cerevisiae encodes a seven-transmembrane heat shock protein expressed in response to various types of stress including heat shock. Although Hsp30p contains a potential N-glycosylation consensus sequence (Asn(2)-Asp(3)-Thr(4)), whether it is actually N-glycosylated has not been verified. Here we demonstrate that N-glycosylation is induced at Asn(2) of Hsp30p by severe heat shock, ethanol stress, and acetic acid stress. Mild heat shock and glucose depletion induced the expression but not N-glycosylation of Hsp30p, indicating the N-glycosylation to be dependent on temperature and environmental conditions. N-glycosylation did not affect on the intracellular localization of Hsp30p but its physiological role under severe heat shock conditions. Since limited information is available on stress-responsive or condition-induced N-glycosylation, our findings provide new insight into the regulation of cellular stress response in yeast.  相似文献   

6.
Previous studies have shown that in Saccharomyces cerevisiae HSP12, which codes for the small cell wall heat shock protein Hsp12p, was induced upon exposure to cell-wall-damaging agents such as Congo red. Here, we demonstrate that Hsp12p decreases the interaction between Congo red and chitin. A Deltahsp12 mutant strain displayed decreased viability, increased aggregation and sedimentation, as well as an altered morphology when grown in the presence of Congo red dye. The presence of Hsp12p was also necessary for the Congo-red-mediated invasion of agar plates.  相似文献   

7.
8.
In this study, we attempted to characterize the physiological response to oxidative stress by heat shock in Saccharomyces cerevisiae KNU5377 (KNU5377) that ferments at a temperature of 40 degrees C. The KNU5377 strain evidenced a very similar growth rate at 40 degrees C as was recorded under normal conditions. Unlike the laboratory strains of S. cerevisiae, the cell viability of KNU5377 was affected slightly under 2 hours of heat stress conditions at 43 degrees C. KNU5377 evidenced a time-dependent increase in hydroperoxide levels, carbonyl contents, and malondialdehyde (MDA), which increased in the expression of a variety of cell rescue proteins containing Hsp104p, Ssap, Hsp30p, Sod1p, catalase, glutathione reductase, G6PDH, thioredoxin, thioredoxin peroxidase (Tsa1p), Adhp, Aldp, trehalose and glycogen at high temperature. Pma1/2p, Hsp90p and H+-ATPase expression levels were reduced as the result of exposure to heat shock. With regard to cellular fatty acid composition, levels of unsaturated fatty acids (USFAs) were increased significantly at high temperatures (43 degrees C), and this was particularly true of oleic acid (C18:1). The results of this study indicated that oxidative stress as the result of heat shock may induce a more profound stimulation of trehalose, antioxidant enzymes, and heat shock proteins, as well as an increase in the USFAs ratios. This might contribute to cellular protective functions for the maintenance of cellular homeostasis, and may also contribute to membrane fluidity.  相似文献   

9.
10.
The present study aimed to investigate the seasonal cellular stress response in vital organs, like the heart, the liver, the whole blood and the skeletal (red and white) muscles of the Mediterranean fish Sparus aurata during a 1-year acclimatization period in the field, in two examined depths (0–2 m and 10–12 m). Processes studied included heat shock protein expression and protein kinase activation. Molecular responses were addressed through the expression of Hsp70 and Hsp90, the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK), the extracellular signal-regulated kinases (ERK-1/2) and c-Jun N-terminal kinases (JNK1/2/3). The induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs in the examined five tissues of the gilthead sea bream indicated a cellular stress response under the prism of a seasonal pattern which was characterized by distinct tissue specificity. Specifically, Hsp induction and MAPK activation occurred before peak summer water temperatures, with no further increases in their levels despite increases in water temperatures. Moreover, although water temperature did not vary significantly with depth of immersion, significant effects of depth on cellular stress response were observed, probably caused by different light regime. The expression and the activation of these certain proteins can be used as tools to define the extreme thermal limits of the gilthead sea bream.  相似文献   

11.
The stress response of PC12 cells was characterized by evaluating the production of heat shock proteins of the 70 kDa (Hsp70), 60 kDa (Hsp60) and 90 kDa (Hsp90) families by western blot analysis. Induction of Hsp synthesis was elicited by brief exposure to elevated temperatures or by addition of ethanol to the cultures. Normal PC12 cells responded to stress with rapid up-regulation of Hsp70 and Hsp60 production. However, fully differentiated PC12 cells (induced by nerve growth factor, NGF) failed to produce Hsp70 or Hsp60 in response to heat or ethanol treatment. The disappearance of the heat shock response of the cells was directly related to the extent of neuronal differentiation. The cellular levels of the constitutive proteins, Hsc70 and Hsp90, were not altered by differentiation of the cells. Production of Hsps was restored in the differentiated cells by removal of NGF which coincided with the loss of neurite expression and retraction of processes.  相似文献   

12.
13.
14.
The Saccharomyces cerevisiae HSP31 (YDR533c) gene encodes a protein that belongs to the DJ-1/PfpI family and its function is unknown. Homologs to Hsp31p polypeptide can be found in organisms from all systematic groups of eukaryotes and prokaryotes, and the functions of the vast majority of them are also hypothetical. One of the homologs is human protein DJ-1. Various amino acid substitutions within this protein correlate with early onset hereditary Parkinson's disease. The deletion of the HSP31 gene displays no apparent phenotype under standard growth conditions, but a thorough functional analysis of S. cerevisiae revealed that its absence makes the cells sensitive to a subset of reactive oxygen species (ROS) generators. HSP31 is induced under conditions of oxidative stress in a YAP1-dependent manner. Similar to other stress response genes, it is also induced in the postdiauxic phase of growth and this induction is YAP1-independent. The patterns of sensitivities to various ROS generators of the hsp31Delta strain and the strain with the deletion of SOD1, another gene defending the cell against ROS, are different. We postulate that Hsp31p protects the cell against oxidative stress and complements other stress protection systems within the cell.  相似文献   

15.
16.
A laboratory strain and an industrial strain of Saccharomyces cerevisiae were grown at high substrate concentration, so-called very high gravity (VHG) fermentation. Simultaneous saccharification and fermentation (SSF) was applied in a batch process using 280 g/L maltodextrin as carbon source. It was shown that known ethanol and osmotic stress responses such as decreased growth rate, lower viability, higher energy consumption, and intracellular trehalose accumulation occur in VHG SSF for both strains when compared with standard laboratory medium (20 g/L glucose). The laboratory strain was the most affected. GC-MS metabolite profiling was applied for assessing the yeast stress response influence on cellular metabolism. It was found that metabolite profiles originating from different strains and/or fermentation conditions were unique and could be distinguished with the help of multivariate data analysis. Several differences in the metabolic responses to stressing conditions were revealed, particularly the increased energy consumption of stressed cells was also reflected in increased intracellular concentrations of pyruvate and related metabolites.  相似文献   

17.
The present study aimed to investigate the seasonal cellular stress response in the heart and the gastrocnemius muscle of the amphibian Pelophylax ridibundus (former name Rana ridibunda) during an 8 month acclimatization period in the field. Processes studied included heat shock protein expression and protein kinase activation. The cellular stress response was addressed through the expression of Hsp70 and Hsp90 and the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK), the extracellular signal-regulated kinases (ERK-1/2) and c-Jun N-terminal kinases (JNK1/2/3). Due to a general metabolic depression during winter hibernation, the induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs are retained at low levels of expression in the examined tissues of P. ridibundus. Recovery from hibernation induces increased levels of the specific proteins, probably providing stamina to the animals during their arousal.  相似文献   

18.
In this study, genome-wide expression analyses were used to study the response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation. Forty per cent of the yeast genome significantly changed expression levels to mediate long-term adaptation to fermenting grape must. Among the genes that changed expression levels, a group of 223 genes was identified, which was designated as fermentation stress response (FSR) genes that were dramatically induced at various points during fermentation. FSR genes sustain high levels of induction up to the final time point and exhibited changes in expression levels ranging from four- to 80-fold. The FSR is novel; 62% of the genes involved have not been implicated in global stress responses and 28% of the FSR genes have no functional annotation. Genes involved in respiratory metabolism and gluconeogenesis were expressed during fermentation despite the presence of high concentrations of glucose. Ethanol, rather than nutrient depletion, seems to be responsible for entry of yeast cells into the stationary phase.  相似文献   

19.
The chitinase genes of Trichoderma spp. (ech42, chit33, nag1) contain one or more copies of a pentanucleotide element (5'-AGGGG-3') in their 5'-noncoding regions. In Saccharomyces cerevisiae, this motif is recognized and bound by the stress response regulator proteins Msn2p/Msn4p. To test whether this motif in the chitinase promoters is bound by a Trichoderma Msn2/4p homolog, we have cloned a gene (seb1) from T. atroviride which encodes a C2H2 zinc-finger protein that is 62 (64)% identical to S. cerevisiae Msn2p (Msn4p) in the zinc-finger region, and almost identical to the G-box binding protein from Haematonectria haematococca and to polypeptides encoded by uncharacterized ORFs from Neurospora crassa and Aspergillus nidulans. Its zinc-finger domain specifically recognizes the AGGGG sequence of the ech42 and nag1 promoter in band-shift assays. However, a cDNA clone of seb1, when overexpressed in S. cerevisiae, was unable to complement a Delta msn2/4 mutant of S. cerevisiae. Levels of seb1 mRNA increased under conditions of osmotic stress (sorbitol, NaCl) but not under other stress conditions (cadmium sulfate, pH, membrane perturbance). A T. atroviride Delta seb1 strain, produced by transformation with a seb1 copy disrupted by insertion of the A. nidulans amdS gene, showed strongly reduced growth on solid medium, but grew normally in liquid medium. In liquid medium, growth of the disruption strain was significantly more inhibited by the presence of 1 M sorbitol and 1 M NaCl than was that of the wild-type strain. Despite the presence of AGGGG elements in the promoter of the chitinase gene nag1, no differences in its expression were found between the parent and the disruption strain. EMSA analyses with cell-free extracts obtained from the seb1 disruption strain showed the presence of proteins that could bind to the AGGGG-element in nag1 and ech42. We therefore conclude that seb1 encodes a protein that is involved in the osmotic stress response, but not in chitinase gene expression, in T. atroviride.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号