首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The orientation of chloroplasts from profile to face position in Mougeotia can be controlled in two ways: by a typical phytochrome-mediated system or by continuous, simultaneous irradiation with far-red and visible light. In experiments with dichromatic irradiation of Mougeotia, the light conditions applied prevented the formation of a far-red-absorbing form of phytochrome gradient in the cell. An unpolarized background of far-red light and linearly polarized monochromatic light of different wavelengths and vibrating parallel to the cell axis, if given by themselves, were completely ineffective in producing any changes in chloroplast orientation. Given together, however, changes in chloroplast orientation were induced. The action spectrum for this interaction between constant far-red and variable visible light was maximal at 620 nanometers. The chloroplast response in these dichromatic light conditions required a prolonged duration of exposure to simultaneous continuous irradiation of high fluence energy. The vibrating plane of linearly polarized 620 nanometer light had no significant influence on interaction with far-red light in chloroplast movement. The results obtained are different from the typical low energy phytochrome-mediated chloroplast orientation. This new type of chloroplast photoresponse might be mediated by an unknown sensory pigment.  相似文献   

2.
The photometric method was used to test a possibility proposed recently that a new photoreceptor with maximum activity at 620 nm is involved in mediating chloroplast rotation in Mougeotia (Z Lechowski, J Bialczyk [1988] Plant Physiol 88: 189-193). The hypothesis was tested under conditions of continuous dichromatic unilateral or mutually perpendicular irradiation with red light of wavelengths 620 or 660 (680) nanometers and far-red. When the red light was polarized parallel to the long cell axis, chloroplast response could be monitored by changing the direction of far-red irradiation. The level of the response obtained with red and far-red applied from the same direction depended on far-red intensity: at higher fluence rates the maximum response was shifted to longer wavelengths of red light. A high fluence rate of far-red inhibited the response. The absorption coefficients of Mougeotia chloroplasts were measured for the studied wave-lengths using the microphotometric method. Possible impact of absorption by the chloroplast on photoreception has been discussed. Current and previous results can be interpreted in terms of phytochrome action and do not support the involvement of the hypothetical 620 nanometer photoreceptor.  相似文献   

3.
We have developed protocols for phase shifting the circadian rhythm of Chlamydomonas reinhardtii by light pulses. This paper describes the photobiology of phase-resetting the Chlamydomonas clock by brief (3 seconds to 15 minutes) light pulses administered during a 24 hour dark period. Its action spectrum exhibited two prominent peaks, at 520 and 660 nanometers. The fluence at 520 nanometers required to elicit a 4 hour phase shift was 0.2 millimole photon per square meter, but the pigment that is participating in resetting the clock under these conditions is unknown. The fluence needed at 660 nanomoles to induce a 4 hour phase shift was 0.1 millimole photon per square meter, which is comparable with that needed to induce the typical low fluence rate response of phytochrome in higher plants. However, the phase shift by red light (660 nanometers) was not diminished by subsequent administration of far-red light (730 nanometers), even if the red light pulse was as short as 0.1 second. This constitutes the first report of a regulatory action by red light in Chlamydomonas.  相似文献   

4.
Red light mediates chloroplast movement and increased activityof calcium-activated potassium channels on the plasma membraneof the alga Mougeotia sp. (UTEX LB 734). When activation ismediated by phytochrome, a far-red light irradiation given sometime after the red light irradiation will reverse the effectof the red light, due to phytochrome photoreversibility. Wecharacterized the escape times (time required for loss of photoreversibility)for these two processes to compare the transduction pathwaysinvolved in chloroplast rotation and channel activation. Theescape time for chloroplast rotation was 2.5 min after red lightirradiation (red and far-red light irradiations were 30 s).For channel activation, shorter red and far-red light irradiations(10 s) had to be used to obtain an escape time of 20 s. Thedifference in the escape times suggests that there is relativelyrapid divergence in the transduction pathways leading from phytochromeactivation (only one molecular species of phytochrome is foundin Mougeotia) to each of the two responses in the same cellularsystem. Because channel activation occurs 2–4 min afterirradiation while the escape time is 20 s, it is unlikely thatphytochrome acts directly on the channel. (Received September 26, 1995; Accepted December 28, 1995)  相似文献   

5.
H. Gabryś 《Planta》1985,166(1):134-140
The profile-to-face chloroplast movement in the green alga Mougeotia has been induced by strong blue and near-ultraviolet light pulses (6 J m-2). Simultaneously, strong red or far-red light (10 W m-2) was applied perpendicularly to the inducing beam. The response was measured photometrically. Against the far-red background the reciprocity law was found to hold for pulse durations varying two orders of magnitude. The action spectrum exhibited a maximum near 450 nm and a distinct increase in near-ultraviolet. The time-course and the spectral dependence of pulse responses of chloroplasts in Mougeotia were similar to those recorded for other plants which are sensitive only to blue. This points to an alternative sensor system active in the short-wavelength region in addition to the phytochrome system.Abbreviations FR far-red light - Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light This paper is dedicated to the memory of Professor Jan Zurzycki  相似文献   

6.
Summary Mougeotia cells with chloroplasts oriented in profile have been irradiated with small spots of monochromatic red polarized light in order to induce chloroplast movement.In these experiments, four factors have been varied: 1. the orientation of the vibration plane of the light in relation to the cell axis, 2. the localization of the spot, i. e. irradiation of the chloroplast or the cytoplasm, 3. the spot size, and 4. the duration of the irradiation.As a result of our experiments, we conclude that the photoreceptor molecules responsible for the light-induced chloroplast movement are localized in the cytoplasm.As the photoreceptor of this reaction is the well known phytochromesystem, we may assume that also in other plants the phytochrome is localized in the cytoplasm rather than in the chloroplast.

Mit 9 Textabbildungen  相似文献   

7.
The saturating photon flux density (400 to 700 nanometers) for induction of flowering of the long day plant Anagallis arvensis L. was 1,900 micromoles per square meter per second (6,000 foot-candles) when an 8-hour daylength was extended to 24 hours by a single period of supplementary irradiation. The saturating photon flux density for photosynthetic CO2 uptake during the same single supplementary light period was lower, at about 1,000 to 650 micromoles per square meter per second (3,000 to 2,000 foot-candles).

The per cent flowering and mean number of floral buds per plant were significantly reduced when the light extension treatment was given in CO2-free air, and glucose (10 kilograms per cubic meter in water) relieved this effect. Glucose solution also significantly increased flowering of plants given supplementary light treatment in atmospheric air under a photon flux density of 80 micromoles per square meter per second. Increasing the CO2 concentration to 1.27 grams per cubic meter of CO2 in air during the supplementary light period did not increase flowering.

It is concluded that high photon flux densities promote flowering of Anagallis through both increased photosynthesis and the photomorphogenic action of high irradiance.

  相似文献   

8.
Chloroplast orientation in the green alga Mougeotia has been induced by unidirectional red or blue light, given continuously during one hour. In addition, part of the preparations obtained scattered strong far-red light simultaneously with the orienting light. This far-red light completely abolished the response to red light, consistent with phytochrome as the sensor pigment for orientation in Mougeotia. In blue light, however, the response was completely insensitive to far-red light, thus pointing to a different sensor pigment in the shortwavelength region.Abbreviation Pfr far-red-absorbing form of phytochrome  相似文献   

9.
In green plants, the large bioelectric changes that photosynthetically active light stimulates make it difficult to observe electrical potential changes related to phytochrome photoconversion. As a first step towards distinguishing between photosynthetic and phytochrome effects, we showed that red light enhances far-red stimulated intracellular potential changes in spinach (Spinacia oleracea) leaf mesophyll cells.

For a dark-adapted leaf, the response to far-red light increased during the first 10 to 30 exposures of 2.5 minutes, after which it was constant. The intracellular potential depolarized by an average of 0.3 millivolts during each 2.5-minute far-red light period, and returned to the resting value during each subsequent dark period. Continuous supplementary red light (at 1-5% of the fluence rate of the far-red light that stimulated the depolarizations) increased the response to far-red 2- to 3-fold. Supplementary red light did not amplify the response to alternating 702 nanometers light and dark periods. The Emerson enhancement effect thus does not seem to explain amplification of the response to 730 nanometers light by supplementary red light. This does not prove that photosynthetic pigments are not involved in some other way.

  相似文献   

10.
Seedlings of Pinus sylvestris L. were grown for 6 weeks at an irradiance of either 8 or 40 watts per square meter in a controlled environment room. Cuttings from these plants were rooted in tap water for 75 days at either 8 or 40 watts per square meter. The photoperiod was 17 hours.

During the first 30 days of the rooting period quantitative changes in carbohydrates were recorded in cuttings from the different treatments. The carbohydrate contents of the cuttings were mainly regulated by the irradiance during the stock plant stage and generally a higher carbohydrate level was found in cuttings from stock plants grown at 40 watts per square meter.

The irradiance during the rooting period had only minor effects on the time course of root formation, whereas the irradiance during the stock plant stage did influence the subsequent root formation. Cuttings from stock plants grown at 8 watts per square meter rooted faster and with higher frequency than those from stock plants grown at 40 watts per square meter. These results are discussed in relation to the mentioned irradiance effects on carbohydrate content.

  相似文献   

11.
G. Wagner  Karin Klein 《Protoplasma》1981,109(1-2):169-185
Summary The single, ribbon-shaped chloroplast in the filamentous green algaMougeotia performs orientational movements with respect to light. The chain of reaction involves phytochrome as the photoreceptor pigment to perceive the light signal differentiated by wavelength and direction, calcium probably to convert the light signal into a chemical message and actomyosin to respond to this message and to move the chloroplast accordingly.Precise reorientation of the chloroplast is proposed to be brought about by a dual function of phytochrome: regulation of the cellular level of calciumand regulation of membrane anchorage sites to actin.The Institute where ProfessorKamiya did early research together with ProfessorKüster.  相似文献   

12.
Light increased the initial rate and the extent of glycerate uptake by intact isolated chloroplasts. Half-maximum stimulation occurred with 10 to 20 watts per square meter of red light. Preillumination of chloroplasts enhanced uptake in a subsequent dark period. The light effect was abolished by DCMU and also by uncoupling agents such as nigericin and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone.

Arsenate and phlorizin only inhibited glycerate uptake to the extent that metabolism in the chloroplast was decreased by insufficient ATP. The concentration of glycerate accumulated in the chloroplast stroma was not significantly decreased. Chloroplasts isolated from young pea shoots (Pisum sativum, L. cv Massey Gem) were depleted of ATP by incubation with inorganic pyrophosphate or with ATP analogs. These treatments also decreased metabolism of glycerate but the actual concentration of glycerate accumulated in the chloroplast stroma was not decreased.

The results indicate that glycerate uptake is driven by ion gradients established across the chloroplast envelope in the light. ATP is not involved in the transport of glycerate into chloroplasts, being required only for the subsequent metabolism of glycerate in the chloroplast stroma. It is proposed that glycerate transport may be coupled to the proton gradient established in the light across the chloroplast envelope.

  相似文献   

13.
It has previously been demonstrated that far-red irradiation of dry Lactuca sativa L. seeds results in inhibition of subsequent germination. Although red has no effect on dry seeds, a red irradiation following a farred irradiation reverses the effect of far-red. This phenomenon is most noticeable in seeds with artificially raised levels of phytochrome in the far-red absorbing form. Qualitatively similar results have been found for the seeds of Plantago major L., Sinapis arvensis L., and Bromus sterilis L. Action spectra studies on Plantago seeds show that the action peaks for promotion and inhibition of germination of hydrated seeds are at 660 and 730 nanometers, respectively. The action spectrum for inhibition of subsequent germination following irradiation of dry seeds is qualitatively and quantitatively similar to that for hydrated seeds, with an action peak at 730 nanometers, indicating absorption by phytochrome in the far-red absorbing form. However, the action spectrum for the reversal of this far-red effect on dry seeds has a broad peak at 680 nanometers and subsidiary peaks at 650 and 600 nanometers. It is proposed that this effect is due to light absorption by the phytochrome intermediate complex meta-Fa, and that the action spectrum reflects the in vivo absorption properties of this intermediate.  相似文献   

14.
We have analyzed light induction of side-branch formation and chloroplast re-arrangement in protonemata of the mossCeratodon purpureus. After 12 hr of dark adaptation, the rate of branch formation was as low as 5%. A red light treatment induced formation of side branches up to 75% of the dark-adapted protonema. The frequency of light induced branch formation differed between cells of different ages, the highest frequency being found in the 5th cell, the most distal cell studied from the apex. We examined the effect of polarized light given parallel to the direction of filament growth. The position of branching within the cell depended on the vibration plane of polarized red light. Branch formation was highest when the electric vector of polarized light vibrates parallel to the cell surface and is fluence rate dependent. The positional effect of polarized red light could be nullified to some extent by simultaneous irradiation with polarized far-red light. An aphototropic mutant,ptr116, shows characteristics of deficiency in biosynthesis of the phytochrome chromophore and exhibits no red-light induced branch formation. Biliverdin, a precursor of the phytochrome chromophore, rescued the red-light induced branching when added to the medium, supporting the conclusion that phytochrome acts as photoreceptor for red light induced branch formation. The light effect on chloroplast re-arrangement was also analyzed in this study. We found that polarized blue light induced chloroplast re-arrangement in wild-type cells, whereas polarized red light was inactive. This result suggests that chloroplast re-arrangement is only controlled by a blue light photoreceptor, not by phytochrome inCeratodon.  相似文献   

15.
Vassey TL 《Plant physiology》1988,88(3):540-542
The extractable activity of sucrose phosphate synthase was determined in etiolated seedlings of maize (Zea mays L.), soybean (Glycine max [L.] Merr.), and sugar beet (Beta vulgaris L.) following treatments of changing light quality. A 30-minute illumination of 30 microeinsteins per square meter per second white light produced a three-fold increase in sucrose phosphate synthase activity at 2 hours postillumination when compared to seedlings maintained in total darkness. Etiolated maize seedlings treated with 3.6 microeinsteins per square meter per second of red and far-red light showed a 50% increase and a 50% decrease in sucrose phosphate synthase activity, respectively, when compared to etiolated maize seedlings treated with white light. Maize seedlings exposed for 30 minutes to red followed by 30 minutes to far-red showed an initial increase in sucrose phosphate synthase activity followed by a rapid decrease to control level. Neither soybean or sugar beet sucrose phosphate synthase responded to the 30-minute illumination of white light. Phytochrome is involved in sucrose phosphate synthase regulation in maize, whereas it is not responsible for changes in sucrose phosphate synthase activity in soybean or sugar beet.  相似文献   

16.
The action spectra for K+ channel activation and chloroplast rotation are shown to be similar. Both phenomena exhibit activation at 660 nanometers, inhibition at 740 nanometers, and partial activation at 460 to 500 nanometers. This confirms that K+ channels in Mougeotia are regulated by phytochrome, and indicates that both phenomena share at least part of the same transduction pathway.  相似文献   

17.
The nature of organs neoformed from tobacco (Nicotiana tabacum cv Samsun) thin cell layers is influenced by the quantity of light supplied and on the sequence of this supply. It is observed that glucose exhibits similar effects. In the presence of glucose at 167 millimolar, continuous light of 50 watts per square meter is required for optimal flower differentiation in vitro. However, 50 watts per square meter irradiance limited to 6 days is sufficient to trigger flower formation in 80% of the explants provided that light is applied from day 6 to day 11 of culture. This critical phase may correspond to the initiation phase during which soluble sugars are mainly needed as carbon energy source rather than as osmoregulators. Under continuous or precise sequential sugar deprivations, either no organogenesis occurs, or abnormal structures or buds are formed. Therefore, light per se is not sufficient to induce flower differentiation. Conversely, a specific quantitative combination of glucose and sucrose almost substitutes for the light requirement for differentiation of anthers and pistils. These observations suggest that, during the sequence of events leading to flower differentiation, light acts on energy-dependent sugar uptake and metabolism and on the increase of reducing potential of chloroplasts.  相似文献   

18.
Tanada T 《Plant physiology》1982,70(3):901-904
The nyctinastic closing of Albizzia julibrissin pinnules is delayed by exposure to far-red radiation at 710 and 730 nanometers, with the former more effective than the latter. Far-red radiation at 750 and 770 nanometers has no effect on the process. Red light at 660 nanometers, which by itself has no effect, delayed closure when given before or simultaneously with far-red radiation at 750 or 770 nanometers. Low doses of green light, on the other hand, prevented all far-red radiations from delaying closure when given together with one of them. Effectiveness peaks at 550 nanometers. Green light by itself has no effect on the closing process.

From these and previous results, it is concluded that phytochrome is one of two photoreceptors in the process, that the other photoreceptor is an unknown pigment, and that the unknown photoreceptor requires some prior effect of the far-red-absorbing form of phytochrome before its action. Predictions are made of some of the properties of the unidentified pigment.

  相似文献   

19.
Zeiger E  Field C 《Plant physiology》1982,70(2):370-375
The photocontrol of the functional coupling between photosynthesis and stomatal conductance in the leaf was investigated in gas exchange experiments using monochromatic light provided by lasers. Net photosynthesis and stomatal conductance were measured in attached leaves of Malva parviflora L. as a function of photon irradiance at 457.9 and 640.0 nanometers.

Photosynthetic rates and quantum yields of photosynthesis were higher under red light than under blue, on an absorbed or incident basis.

Stomatal conductance was higher under blue than under red light at all intensities. Based on a calculated apparent photon efficiency of conductance, blue and red light had similar effects on conductance at intensities higher than 0.02 millimoles per square meter per second, but blue light was several-fold more efficient at very low photon irradiances. Red light had no effect on conductance at photon irradiances below 0.02 millimoles per square meter per second. These observations support the hypothesis that stomatal conductance is modulated by two photosystems: a blue light-dependent one, driving stomatal opening at low light intensities and a photosynthetically active radiation (PAR)-dependent one operating at higher irradiances.

When low intensity blue light was used to illuminate a leaf already irradiated with high intensity, 640 nanometers light, the leaf exhibited substantial increases in stomatal conductance. Net photosynthesis changed only slightly. Additional far-red light increased net photosynthesis without affecting stomatal conductance. These observations indicate that under conditions where the PAR-dependent system is driven by high intensity red light, the blue light-dependent system has an additive effect on stomatal conductance.

The wavelength dependence of photosynthesis and stomatal conductance demonstrates that these processes are not obligatorily coupled and can be controlled by light, independent of prevailing levels of intercellular CO2. The blue light-dependent system in the guard cells may function as a specific light sensor while the PAR-dependent system supplies a CO2-modulated energy source providing functional coupling between the guard cells and the photosynthesizing mesophyll.

  相似文献   

20.
The growth and tuberization of potatoes (Solanum tuberosum L.) maintained for 6 weeks under four different regimes of continuous irradiance were compared to plants given 12 hours light and 12 hours dark. Treatments included: (a) continuous photosynthetic photon flux of 200 micromoles per square meter per second cool-white fluorescent (CWF); (b) continuous 400 micromoles per square meter per second CWF; (c) 12 hours 400 micromoles per square meter per second CWF plus 12 hours dim CWF at 5 micromoles per square meter per second; (d) 12 hours micromoles per square meter per second CWF plus 12 hours dim incandescent (INC) at 5 micromoles per square meter per second and a control treatment of 12 hours light at 400 micromoles per square meter per second CWF and 12 hours dark. The study included five cultivars ranging from early- to late-season types: `Norland,' `Superior,' `Norchip,' `Russet Burbank,' and `Kennebec.' Tuber development progressed well under continuous irradiation at 400 micromoles per square meter per second and under 12 hours irradiance and 12 hours dark, while tuber development was suppressed in all other light treatments. Continuous irradiation at 200 or 400 micromoles per square meter per second resulted in severe stunting and leaf malformation on `Superior' and `Kennebec' plants, but little or no injury and vigorous shoot growth in the other cultivars. No injury or stunting were apparent under 12-dim light or 12-dark treatments. Plants given 12 hours dim INC showed significantly greater stem elongation but less total biomass than plants in other treatments. The continuous light encouraged shoot growth over tuber growth but this trend was overridden by providing a high irradiance level. The variation among cultivars for tolerance to continuous lighting indicates that potato may be a useful species for photoinhibition studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号