首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RG13 is a 72 kDa engineered allosteric enzyme comprised of a fusion between maltose binding protein (MBP) and TEM1 β‐lactamase (BLA) for which maltose is a positive effector of BLA activity. We have used NMR spectroscopy to acquire [15N, 1H]‐TROSY‐HSQC spectra of RG13 in the presence and absence of maltose. The RG13 chemical shift data was compared to the published chemical shift data of MBP and BLA. The spectra are consistent with the expectation that the individual domain structures of RG13 are substantially conserved from MBP and BLA. Differences in the spectra are consistent with the fusion geometry of MBP and BLA and the maltose‐dependent differences in the kinetics of RG13 enzyme activity. In particular, the spectra provide evidence for a maltose‐dependent conformational change of a key active site glutamate involved in deacylation of the enzyme‐substrate intermediate. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
The periplasmic maltose-binding protein (MBP) of Escherichia coli is the recognition component of the maltose chemoreceptor and of the active transport system for maltose. It interacts with the Tar chemotactic signal transducer and the integral cytoplasmic-membrane components (the MalF and MalG proteins) of the maltose transport system. Maltose binds in a cleft between the globular N-terminal and C-terminal domains of MBP, which are connected by a moveable hinge. The two domains undergo a large motion relative to one another as the protein moves from the open, unbound state to the closed, ligand-bound state. We generated, by doped-primer mutagenesis, amino acid substitutions that specifically disrupt the chemotactic function of MBP. These substitutions cluster in two well-defined regions that are nearly contiguous on the surface of MBP in its closed conformation. One region is in the N-terminal domain and one is in the C-terminal domain. The distance between the two regions is expected to change substantially as the protein goes from the open to the closed form. These results support a model in which ligand binding brings two recognition sites on MBP into the proper spatial relationship to interact with complementary sites on Tar. Mutations in MBP that appear to cause defects in interaction with MalF and MalG are distributed differently from mutations that primarily affect maltose taxis. We conclude that the regions of MBP that contact Tar and those that contact MalF and MalG are adjacent on the face of the protein opposite the hinge connecting the two domains and that those regions are largely, although perhaps not entirely, distinct.  相似文献   

3.
A heterotropic allosteric effect involves an effector molecule that is distinct from the substrate or ligand of the protein. How heterotropic allostery originates is an unanswered question. We have previously created several heterotropic allosteric enzymes by recombining the genes for TEM1 beta-lactamase (BLA) and maltose binding protein (MBP) to create BLAs that are positively or negatively regulated by maltose. We show here that one of these engineered enzymes has approximately 10(6) M(-1) affinity for Zn(2+), a property that neither of the parental proteins possesses. Furthermore, Zn(2+) is a negative effector that noncompetitively switches off beta-lactam hydrolysis activity. Mutagenesis experiments indicate that the Zn(2+)-binding site does not involve a histidine or a cysteine, which is atypical of natural Zn(2+)-binding sites. These studies also implicate helices 1 and 12 of the BLA domain in allosteric signal propagation. These results support a model for the evolution of heterotropic allostery in which effector affinity and allosteric signaling emerge simultaneously.  相似文献   

4.
Engineering novel allostery into existing proteins is a challenging endeavor to obtain novel sensors, therapeutic proteins, or modulate metabolic and cellular processes. The RG13 protein achieves such allostery by inserting a circularly permuted TEM-1 β-lactamase gene into the maltose binding protein (MBP). RG13 is positively regulated by maltose yet is, serendipitously, inhibited by Zn(2+) at low μM concentration. To probe the structure and allostery of RG13, we crystallized RG13 in the presence of mM Zn(2+) concentration and determined its structure. The structure reveals that the MBP and TEM-1 domains are in close proximity connected via two linkers and a zinc ion bridging both domains. By bridging both TEM-1 and MBP, Zn(2+) acts to "twist tie" the linkers thereby partially dislodging a linker between the two domains from its original catalytically productive position in TEM-1. This linker 1 contains residues normally part of the TEM-1 active site including the critical β3 and β4 strands important for activity. Mutagenesis of residues comprising the crystallographically observed Zn(2+) site only slightly affected Zn(2+) inhibition 2- to 4-fold. Combined with previous mutagenesis results we therefore hypothesize the presence of two or more inter-domain mutually exclusive inhibitory Zn(2+) sites. Mutagenesis and molecular modeling of an intact TEM-1 domain near MBP within the RG13 framework indicated a close surface proximity of the two domains with maltose switching being critically dependent on MBP linker anchoring residues and linker length. Structural analysis indicated that the linker attachment sites on MBP are at a site that, upon maltose binding, harbors both the largest local Cα distance changes and displays surface curvature changes, from concave to relatively flat becoming thus less sterically intrusive. Maltose activation and zinc inhibition of RG13 are hypothesized to have opposite effects on productive relaxation of the TEM-1 β3 linker region via steric and/or linker juxtapositioning mechanisms.  相似文献   

5.
A well‐studied periplasmic‐binding protein involved in the abstraction of maltose is maltose‐binding protein (MBP), which undergoes a ligand‐induced conformational transition from an open (ligand‐free) to a closed (ligand‐bound) state. Umbrella sampling simulations have been us to estimate the free energy of binding of maltose to MBP and to trace the potential of mean force of the unbinding event using the center‐of‐mass distance between the protein and ligand as the reaction coordinate. The free energy thus obtained compares nicely with the experimentally measured value justifying our theoretical basis. Measurement of the domain angle (N‐terminal‐domain – hinge – C‐terminal‐domain) along the unbinding pathway established the existence of three different states. Starting from a closed state, the protein shifts to an open conformation during the initial unbinding event of the ligand then resides in a semi‐open conformation and later resides predominantly in an open‐state. These transitions along the ligand unbinding pathway have been captured in greater depth using principal component analysis. It is proposed that in mixed‐model, both conformational selection and an induced‐fit mechanism combine to the ligand recognition process in MBP. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Protein engineering was used previously to convert maltose-binding protein (MBP) into a zinc biosensor. Zn(2+) binding by the engineered MBP was thought to require a large conformational change from "open" to "closed", similar to that observed when maltose is bound by the wild-type protein. We show that although this re-designed MBP molecule binds Zn(2+) with high affinity as previously reported, it does not adopt a closed conformation in solution as assessed by small-angle X-ray scattering. High-resolution crystallographic studies of the engineered Zn(2+)-binding MBP molecule demonstrate that Zn(2+) is coordinated by residues on the N-terminal lobe only, and therefore Zn(2+) binding does not require the protein to adopt a fully closed conformation. Additional crystallographic studies indicate that this unexpected Zn(2+) binding site can also coordinate Cu(2+) and Ni(2+) with only subtle changes in the overall conformation of the protein. This work illustrates that the energetic barrier to domain closure, which normally functions to maintain MBP in an open concentration in the absence of ligand, is not easily overcome by protein design. A comparison to the mechanism of maltose-induced domain rearrangement is discussed.  相似文献   

7.
The protein design rules for engineering allosteric regulation are not well understood. A fundamental understanding of the determinants of ligand binding in an allosteric context could facilitate the design and construction of versatile protein switches and biosensors. Here, we conducted extensive in vitro and in vivo characterization of the effects of 285 unique point mutations at 15 residues in the maltose‐binding pocket of the maltose‐activated β‐lactamase MBP317‐347. MBP317‐347 is an allosteric enzyme formed by the insertion of TEM‐1 β‐lactamase into the E. coli maltose binding protein (MBP). We find that the maltose‐dependent resistance to ampicillin conferred to the cells by the MBP317‐347 switch gene (the switch phenotype) is very robust to mutations, with most mutations slightly improving the switch phenotype. We identified 15 mutations that improved switch performance from twofold to 22‐fold, primarily by decreasing the catalytic activity in the absence of maltose, perhaps by disrupting interactions that cause a small fraction of MBP in solution to exist in a partially closed state in the absence of maltose. Other notable mutations include K15D and K15H that increased maltose affinity 30‐fold and Y155K and Y155R that compromised switching by diminishing the ability of maltose to increase catalytic activity. The data also provided insights into normal MBP physiology, as select mutations at D14, W62, and F156 retained high maltose affinity but abolished the switch's ability to substitute for MBP in the transport of maltose into the cell. The results reveal the complex relationship between ligand binding and allostery in this engineered switch.  相似文献   

8.
The affinity of maltose-binding protein (MBP) for maltose and related carbohydrates was greatly increased by removal of groups in the interface opposite the ligand binding cleft. The wild-type protein has a KD of 1200 nM for maltose; mutation of residues Met-321 and Gln-325, both to alanine, resulted in a KD for maltose of 70 nM; deletion of 4 residues, Glu-172, Asn-173, Lys-175, and Tyr-176, which are part of a poorly ordered loop, results in a KD for maltose of 110 nM. Combining the mutations yields an increased affinity for maltodextrins and a KD of 6 nM for maltotriose. Comparison of ligand binding by the mutants, using surface plasmon resonance spectroscopy, indicates that decreases in the off-rate are responsible for the increased affinity. Small-angle x-ray scattering was used to demonstrate that the mutations do not significantly affect the solution conformation of MBP in either the presence or absence of maltose. The crystal structures of selected mutants showed that the mutations do not cause significant structural changes in either the closed or open conformation of MBP. These studies show that interactions in the interface opposite the ligand binding cleft, which we term the "balancing interface," are responsible for modulating the affinity of MBP for its ligand. Our results are consistent with a model in which the ligand-bound protein alternates between the closed and open conformations, and removal of interactions in the balancing interface decreases the stability of the open conformation, without affecting the closed conformation.  相似文献   

9.
In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.  相似文献   

10.
The uptake of nutrients is essential for the survival of bacterial cells. Many specialized systems have evolved, such as the maltose-dependent ABC transport system that transfers oligosaccharides through the cytoplasmic membrane. The maltose/maltodextrin-binding protein (MBP) serves as an initial high-affinity binding component in the periplasm that delivers the bound sugar into the cognate ABC transporter MalFGK(2). We have investigated the domain motions induced by the binding of the ligand maltotriose into the binding cleft using molecular dynamics simulations. We find that MBP is predominantly in the open state without ligand and in the closed state with ligand bound. Oligosaccharide binding induces a closure motion (30.0 degrees rotation), whereas ligand removal leads to domain opening (32.6 degrees rotation) around a well-defined hinge affecting key areas relevant for chemotaxis and transport. Our simulations suggest that a "hook-and-eye" motif is involved in the binding. A salt bridge between Glu-111 and Lys-15 forms that effectively locks the protein-ligand complex in a semiclosed conformation inhibiting any further opening and promoting complete closure. This previously unrecognized feature seems to secure the ligand in the binding site and keeps MBP in the closed conformation and suggests a role in the initial steps of substrate transport.  相似文献   

11.
MalFGK2 is an ATP‐binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose‐binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide‐binding subunits (MalK dimer). This MBP‐stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose‐bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi‐open MalK dimer. Maltose‐bound MBP promotes the transition to the semi‐open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi‐open MalK2 conformation by maltose‐bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi‐open conformation, from which it can proceed to hydrolyze ATP.  相似文献   

12.
The maltose transport complex of Escherichia coli, a member of the ATP-binding cassette superfamily, mediates the high affinity uptake of maltose at the expense of ATP. The membrane-associated transporter consists of two transmembrane subunits, MalF and MalG, and two copies of the cytoplasmic ATP-binding cassette subunit, MalK. Maltose-binding protein (MBP), a soluble periplasmic protein, delivers maltose to the MalFGK(2) transporter and stimulates hydrolysis by the transporter. Site-directed spin labeling electron paramagnetic resonance spectroscopy is used to monitor binding of MBP to MalFGK(2) and conformational changes in MBP as it interacts with MalFGK(2). Cysteine residues and spin labels have been introduced into the two lobes of MBP so that spin-spin interaction will report on ligand-induced closure of the protein (Hall, J. A., Thorgeirsson, T. E., Liu, J., Shin, Y. K., and Nikaido, H. (1997) J. Biol. Chem. 272, 17610-17614). At least two different modes of interaction between MBP and MalFGK(2) were detected. Binding of MBP to MalFGK(2) in the absence of ATP resulted in a decrease in motion of spin label at position 41 in the C-terminal domain of MBP. In a vanadate-trapped transition state intermediate, all free MBP became tightly bound to MalFGK(2), spin label in both lobes became completely immobilized, and spin-spin interactions were lost, suggesting that MBP was in an open conformation. Binding of non-hydrolyzable MgATP analogs or ATP in the absence of Mg is sufficient to stabilize a complex of open MBP and MalFGK(2). Taken together, these data suggest that closure of the MalK dimer interface coincides with opening of MBP and maltose release to the transporter.  相似文献   

13.
14.
The Tar chemotactic signal transducer of Escherichia coli mediates attractant responses to L-aspartate and to maltose. Aspartate binds across the subunit interface of the periplasmic receptor domain of a Tar homodimer. Maltose, in contrast, first binds to the periplasmic maltose-binding protein (MBP), which in its ligand-stabilized closed form then interacts with Tar. Intragenic complementation was used to determine the MBP-binding site on the Tar dimer. Mutations causing certain substitutions at residues Tyr-143, Asn-145, Gly-147, Tyr-149, and Phe-150 of Tar lead to severe defects in maltose chemotaxis, as do certain mutations affecting residues Arg-73, Met-76, Asp-77, and Ser-83. These two sets of mutations defined two complementation groups when the defective proteins were co-expressed at equal levels from compatible plasmids. We conclude that MBP contacts both subunits of the Tar dimer simultaneously and asymmetrically. Mutations affecting Met-75 could not be complemented, suggesting that this residue is important for association of MBP with each subunit of the Tar dimer. When the residues involved in interaction with MBP were mapped onto the crystal structure of the Tar periplasmic domain, they localized to a groove at the membrane-distal apex of the domain and also extended onto one shoulder of the apical region.  相似文献   

15.
The ability to regulate cellular protein activity offers a broad range of biotechnological and biomedical applications. Such protein regulation can be achieved by modulating the specific protein activity or through processes that regulate the amount of protein in the cell. We have previously demonstrated that the nonhomologous recombination of the genes encoding maltose binding protein (MBP) and TEM1 β‐lactamase (BLA) can result in genes that confer maltose‐dependent resistance to β‐lactam antibiotics even though the encoded proteins are not allosteric enzymes. We showed that these phenotypic switches—named based on their conferral of a switching phenotype to cells—resulted from a specific interaction with maltose in the cell that increased the switches cellular accumulation. Since phenotypic switches represent an important class of engineered proteins for basic science and biotechnological applications in vivo, we sought to elucidate the phenomena behind the increased accumulation and switching properties. Here, we demonstrate the key role for the linker region between the two proteins. Experimental evidence supports the hypothesis that in the absence of their effector, some phenotypic switches possess an increased rate of unfolding, decreased conformational stability, and increased protease susceptibility. These factors alone or in combination serve to decrease cellular accumulation. The effector functions to increase cellular accumulation by alleviating one or more of these defects. This perspective on the mechanism for phenotypic switching will aid the development of design rules for switch construction for applications and inform the study of the regulatory mechanisms of natural cellular proteins.  相似文献   

16.
The plum pox potyvirus (PPV) cylindrical inclusion (CI) protein fused to the maltose binding protein (MBP) has been synthesized in Escherichia coli and purified by affinity chromatography in amylose resin. In the absence of any other viral factors, the fusion product had NTPase, RNA binding and RNA helicase activities. These in vitro activities were not affected by removal of the last 103 amino acids of the CI protein. However, other deletions in the C-terminal part of the protein, although leaving intact all the region conserved in RNA helicases, drastically impaired the ability to unwind dsRNA and to hydrolyze NTPs. A mutant protein lacking the last 225 residues retained the competence to interact with RNA. Further deletions mapped boundaries of the RNA binding domain within residues 350 and 402 of the PPV CI protein. This region includes the arginine-rich motif VI, the most carboxy terminal conserved domain of RNA helicases of the superfamily SF2. These results indicate that NTP hydrolysis is not an essential component for RNA binding of the PPV CI protein.  相似文献   

17.
Cyclin-dependent kinase subunit (CKS) proteins bind to cyclin-dependent kinases and target various proteins to phosphorylation and proteolysis during cell division. Crystal structures showed that CKS can exist both in a closed monomeric conformation when bound to the kinase and in an inactive C-terminal beta-strand-exchanged conformation. With the exception of the hinge loop, however, both crystal structures are identical, and no new protein interface is formed in the dimer. Protein engineering studies have pinpointed the crucial role of the proline 90 residue of the p13(suc1) CKS protein from Schizosaccharomyces pombe in the monomer-dimer equilibrium and have led to the concept of a loaded molecular spring of the beta-hinge motif. Mutation of this hinge proline into an alanine stabilizes the protein and prevents the occurrence of swapping. However, other mutations further away from the hinge as well as ligand binding can equally shift the equilibrium between monomer and dimer. To address the question of differential affinity through relief of the strain, here we compare the ligand binding of the monomeric form of wild-type S. pombe p13(suc1) and its hinge mutant P90A in solution by NMR spectroscopy. We indeed observed a 5-fold difference in affinity with the wild-type protein being the most strongly binding. Our structural study further indicates that both wild-type and the P90A mutant proteins adopt in solution the closed conformation but display different dynamic properties in the C-terminal beta-sheet involved in domain swapping and protein interactions.  相似文献   

18.
Benson DE  Haddy AE  Hellinga HW 《Biochemistry》2002,41(9):3262-3269
Computational protein design methods were used to identify mutations that are predicted to introduce a binuclear copper center coordinated by six histidines, replacing the maltose-binding site in Escherichia coli maltose-binding protein (MBP) with an oxygen-binding site. A small family of five candidate designs consisting of 9 to 10 mutations each was constructed by oligonucleotide-directed mutagenesis. These mutant proteins were expressed and purified, and their stability, copper- and cobalt-binding properties, and interactions of the resulting metalloprotein complexes with azide, hydrogen peroxide, and dioxygen were characterized. We identified one 10-fold mutant, MBP.Hc.E, that can form Cu(II)(2) and Co(II)(2) complexes that interact with H(2)O(2) and O(2). The Co(II)(2) protein reacts with H(2)O(2) to form a complex that is spectroscopically similar to a synthetic model that structurally mimics the oxy-hemocyanin core, whereas the Cu(II)(2) protein reacted with O(2) or H(2)O(2) does not. We postulate that the equilibrium between the open and closed conformations of MBP allows species with variable Cu-Cu distances to form, and that such species can bind ligands in geometries that are not observed in natural type III centers. Introduction of one additional mutation in the hinge region of MBP, I329F, known to favor formation of the closed state, results in a binuclear copper center that when reacted with low concentrations of H(2)O(2) mimics the spectroscopic signature of oxy-hemocyanin.  相似文献   

19.
The malE gene encodes the periplasmic maltose-binding protein (MBP). Nineteen mutations that still permit synthesis of stable MBP were generated by random insertion of a BamHI octanucleotide into malE and six additional mutations by in-vitro recombinations between mutant genes. The sequence changes were determined; in most cases the linker insertion is accompanied by a small deletion (30 base-pairs on average). The mutant MBP were studied for export, growth on maltose and maltodextrins, maltose transport and binding, and maltose-induced fluorescence changes. Sixteen mutant MBP (out of 21 studied in detail) were found in the periplasmic space: 12 of them retained a high affinity for maltose, and 10 activity for growth on maltose. The results show that several regions of MBP are dispensable for stability, substrate binding and export. Three regions (residues 207 to 220, 297 to 303 and 364 to 370) may be involved in interactions with the MalF or MalG proteins. A region near the C-terminal end is important for maltose binding. Two regions of the mature protein (residues 18 to 42 and 280 to 296) are required for export to, or solubility in, the periplasm.  相似文献   

20.
The GCN2 protein kinase coordinates protein synthesis with levels of amino acid stores by phosphorylating eukaryotic translation initiation factor 2. The autoinhibited form of GCN2 is activated in cells starved of amino acids by binding of uncharged tRNA to a histidyl-tRNA synthetase-like domain. Replacement of Arg-794 with Gly in the PK domain (R794G) activates GCN2 independently of tRNA binding. Crystal structures of the GCN2 protein kinase domain have been determined for wild-type and R794G mutant forms in the apo state and bound to ATP/AMPPNP. These structures reveal that GCN2 autoinhibition results from stabilization of a closed conformation that restricts ATP binding. The R794G mutant shows increased flexibility in the hinge region connecting the N- and C-lobes, resulting from loss of multiple interactions involving Arg794. This conformational change is associated with intradomain movement that enhances ATP binding and hydrolysis. We propose that intramolecular interactions following tRNA binding remodel the hinge region in a manner similar to the mechanism of enzyme activation elicited by the R794G mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号