首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In vertebrate embryos, spinal motor neurons project through segmentally reiterated nerves into the somites. Here, we report that zebrafish secondary motor neurons, which are similar to motor neurons in birds and mammals, depend on myotomal cues to navigate into the periphery. We show that the absence of myotomal adaxial cells in you-too/gli2 embryos severely impairs secondary motor axonal pathfinding, including their ability to project into the somites. Moreover, in diwanka mutant embryos, in which adaxial cells are present but fail to produce cues essential for primary motor growth cones to pioneer into the somites, secondary motor axons display similar pathfinding defects. The similarities between the axonal defects in you-too/gli2 and diwanka mutant embryos strongly suggest that pathfinding of secondary motor axons depends on myotome-derived cues, and that the diwanka gene is a likely candidate to produce or encode such a cue. Our experiments also demonstrate that diwanka plays a central role in the migration of primary and secondary motor neurons, suggesting that both neural populations share mechanisms underlying axonal pathfinding. In summary, we provide compelling evidence that myotomal cells produce multiple signals to initiate and control the migration of spinal nerve axons into the somites.  相似文献   

4.
5.
6.
To analyze the characteristics of neurons and the ectopic fibers that occur in the floor plate-deprived neural tube, the neural tube was separated ipsilaterally from the floor plate and notochord in chick embryos at H-H stage 12. After fixation, operated embryos were labeled with several monoclonal antibodies for detecting cell types and defining the regional characteristics of the neural tube. On the operated side, the basement membrane of the neural tube showed characteristics similar to that of the alar plates. Many neurons had axons that extended outside of the neural tube but which lacked the antigen normally associated with motoneurons. Fibers from the dorsal root ganglia also displayed an atypical distribution within the neural tube. These observations suggest that the neurons in the alar plate can develop independently from the influence(s) of the floor plate and/or notochord and send their axons outside of the neural tube despite the fact that neurons developed in the alar plate do not send axons into the periphery during normal development. It is likely that inhibitory mechanisms, which normally function to restrict axonal growth to within the neural tube, either do not develop or are prevented from functioning in the basal plate lacking environment.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Sensory axons from dorsal root ganglia neurons are guided to spinal targets by molecules differentially expressed along the dorso-ventral axis of the neural tube. NT-3-responsive muscle afferents project ventrally, cease extending, and branch upon contact with motoneurons (MNs), their synaptic partners. We have identified WNT-3 as a candidate molecule that regulates this process. Wnt-3 is expressed by MNs of the lateral motor column at the time when MNs form synapses with sensory neurons. WNT-3 increases branching and growth cone size while inhibiting axonal extension in NT-3- but not NGF-responsive axons. Ventral spinal cord secretes factors with axonal remodeling activity for NT-3-responsive neurons. This activity is present at limb levels and is blocked by a WNT antagonist. We propose that WNT-3, expressed by MNs, acts as a retrograde signal that controls terminal arborization of muscle afferents.  相似文献   

16.
17.
18.
Enteric neurons arise from vagal and sacral level neural crest cells. To examine the phenotype of neural-crest-derived cells in vagal and sacral pathways, we used antisera to Sox10, p75, Phox2b, and Hu, and transgenic mice in which the expression of green fluorescent protein was under the control of the Ret promoter. Sox10 was expressed prior to the emigration of vagal cells, whereas p75 was expressed shortly after their emigration. Most crest-derived cells that emigrated adjacent to somites 1–4 migrated along a pathway that was later followed by the vagus nerve. A sub-population of these vagal cells coalesced to form vagal ganglia, whereas others continued their migration towards the heart and gut. Cells that coalesced into vagal ganglia showed a different phenotype from cells in the migratory streams proximal and distal to the ganglia. Only a sub-population of the vagal cells that first entered the foregut expressed Phox2b or Ret. Sacral neural crest cells gave rise to pelvic ganglia and some neurons in the hindgut. The pathways of sacral neural crest cells were examined by using DβH-nlacZ mice. Sacral cells appeared to enter the distal hindgut around embryonic day 14.5. Very few of the previously demonstrated, but rare, neurons that were present in the large intestine of Ret null mutants and that presumably arose from the sacral neural crest expressed nitric oxide synthase, unlike their counterparts in Ret heterozygous mice. This study was supported by the National Health and Medical Research Council of Australia (project grants nos. 145628 and 350311, C.J. Martin Fellowship no. 007144, and Senior Research Fellowship no. 170224).  相似文献   

19.
20.
The paralogous paired-like homeobox genes Phox2a and Phox2b are involved in the development of specific neural subtypes in the central and peripheral nervous systems. The different phenotypes of Phox2 knockout mutants, together with their asynchronous onset of expression, prompted us to generate two knock-in mutant mice, in which Phox2a is replaced by the Phox2b coding sequence, and vice versa. Our results indicate that Phox2a and Phox2b are not functionally equivalent, as only Phox2b can fulfill the role of Phox2a in the structures that depend on both genes. Furthermore, we demonstrate unique roles of Phox2 genes in the differentiation of specific motor neurons. Whereas the oculomotor and the trochlear neurons require Phox2a for their proper development, the migration of the facial branchiomotor neurons depends on Phox2b. Therefore, our analysis strongly indicates that biochemical differences between the proteins rather than temporal regulation of their expression account for the specific function of each paralogue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号