首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p53 is a transformation-related protein that is encoded by the cellular genome and is synthesized at elevated levels in a wide range of different cell line types and in primary tumors of various species. By using several independently established anti-p53 monoclonal antibodies, it was possible to distinguish between p53 of mouse origin and p53 of Chinese hamster origin. By analysis of a series of mouse X Chinese hamster hybrid cell lines containing various mouse chromosomes, we mapped the p53 gene product to mouse chromosome 11.  相似文献   

2.
Electrophoretic mobilities in polyacrylamide gel of five dehydrogenases: NADP-dependent malate dehydrogenase (NADP-MDH), 6-phosphogluconate dehydrogenase (6PGD), alcohol dehydrogenase (ADH), glucose-6-phosphate dehydrogenase (G6PD) and glutamate dehydrogenase (GDH) were investigated in a series of mouse X Chinese hamster somatic cell hybrids. Seven hybrid lines with different ratio of chromosome sets of hamster and mouse: 1:1, 2:1, 3:1 and 1:2 respectively were studied. NADP-MDH and 6PGD of both parental species and intermediate hybrid bands were present in all hybrids except two lines. These lines had only hamster MDH due to the elimination of mouse chromosomes. A correlation was found between the gene dose and the intensity of the expression of the MDH bands. The mouse type ADH was detected in all hybrids. The hamster ADH was found in one of the hybrid lines that lost all mouse chromosomes during cultivation. It is suggested that hamster ADH activity was suppressed in hybrids by the mouse genome. The species origin of GDH and G6PD could not be established due to similarity of electrophoretic mobilities of respective enzymes in parental cells.  相似文献   

3.
The chromosomal distribution of murine genes expressed during differentiation of skeletal muscle cells was determined by Southern blot analysis of DNA from mouse-Chinese hamster hybrid cell lines containing incomplete subsets of mouse chromosomes. All detectable myosin heavy chain genes are located on chromosome 11. The gene for the myosin light chain 2 is located on chromosome 7. The skeletal muscle alpha-actin gene and several other actin genes, or pseudogenes, are located on chromosome 3. Additional actin DNA sequences are distributed on other mouse chromosomes.  相似文献   

4.
Pseudotypes of vesicular stomatitis virus (VSV) containing envelope glycoproteins provided by C3H mammary tumor virus (MTV) instead of the normal VSV G-proteins were prepared and used to assay the presence of an MTV receptor on cells. The assay was specific as demonstrated by competition studies with excess MTV particles and neutralization of the pseudotypes with anti-MTV serum or monoclonal antibodies directed against MTV gp52. The MTV receptor was abundantly present on mouse cells but hardly detectable on nonmurine cells, including the Chinese hamster cell line E36. Somatic cell hybrids between E36 cells and GRS/A spontaneous leukemia cells (GRSL cells) and between E36 and GRS/A primary mammary tumor cells were made. The hybrids retained all Chinese hamster chromosomes but segregated mouse chromosomes. From the analysis of the isoenzymes and chromosomes of the hybrid cell lines we conclude that the gene for the receptor (MTVR-1) is located on mouse chromosome 16.  相似文献   

5.
Hybrids between a fibroblastic Chinese hamster cell line (CH23) and a mouse lymphoma cell line (P388F36) were produced and isolated by a simple new method without using selective media and avoiding contact with the parental cells. The chromosomal situation in the two hybrid types (PCM and PCS) isolated suggested that growth on glass surface (PCM) or in suspension (PCS) depended on the number of hamster and mouse chromosomes which existed in the hybrids. Chromosomal stability in hybrids grown as monolayers (PCM) was reached at a stage in which two to four mouse chromosomes coexisted with no fewer than 19 hamster chromosomes. In a study of gene linkage utilizing clones of this hybrid population, five out of nine genes regulating the synthesis of different esterases in the mouse cells used were found to be unlinked.  相似文献   

6.
The gene encoding the human transketolase enzyme (TKT) was localized by fluorescence in situ hybridization to normal and FRA3B human chromosomes. Southern blot analysis of a series of human x mouse and human x hamster hybrid cell lines confirmed this localisation. TKT maps to 3p14 and distal to FRA3B, localizing TKT to 3p14.3.  相似文献   

7.
The activity of thymidine kinase (TK) was studied in series of somatic cell hybrids between the mouse cell line 3T3-4E (TK-) and Chinese hamster cells M-15-1 (HGPRT-). Four groups of hybrid lines with different ratio of parental chromosome sets have been investigated: 1) three lines containing one hamster and one mouse chromosome set (1 hs+1 ms); 2) one line with 2 hs+1 ms; 3) one line containing 3 hs+1 ms and 4) one line containing 1 hs+2 ms. Mixtures of extracts from the parental cells were shown to possess the expected TK activity. The calculation of the activity per cell revealed that the 1 hs+1 ms and 2 hs+1 ms hybrid lines possessed about 50% of the initial hamster cell TK activity. The decreased TK activity in these hybrids might be due either to a loss of hamster chromosomes or to some inhibitory effect of mouse genome in cells with the studied ratio of parental sets. The enzyme activity in the 3 hs+1 ms hybrid was as expected, about three times greater than that of hamster cells.  相似文献   

8.
THE RIBOSOMAL RNA OF HAMSTER-MOUSE HYBRID CELLS   总被引:7,自引:2,他引:5       下载免费PDF全文
The ribosomal RNA (rRNA) of a series of hamster-mouse somatic cell hybrids was studied. Mouse 28S rRNA was separated from its hamster counterpart by a two-step procedure involving sucrose gradient centrifugation of ribosomes and polyacrylamide gel electrophoresis of rRNA. Both hamster and mouse types of rRNA were synthesized in the 11 hybrids tested, including hybrids containing only about one-half the haploid number of either mouse or hamster chromosomes. It appears that, for both hamster and mouse rRNA, when the chromosomes of one species constituted the majority of the chromosomes of a hybrid, a disproportionately higher percentage of rRNA of that species was present in the hybrid. Some hybrid clones, having a majority of mouse chromosomes, had a mouse rRNA cell concentration approximately four to five times higher than the concentration expected from linear extrapolation of the value found for the mouse parental cell line.  相似文献   

9.
We analyzed the amplification of the CAD gene in independently isolated N-(phosphonacetyl)-L-aspartate-resistant clones derived from single parental clones in two mouse cell lines. We report for the first time that the CAD gene is amplified unstably in mouse cells, that the degree of instability varies greatly between clones, and that minute chromosomes and highly unstable chromosomelike structures contain the amplified sequences. These data are most consistent with the idea that the amplified unit in each clone consists of different flanking DNA and that such differences engender amplified sequences with unequal stability. We also introduced the mouse chromosome containing the CAD gene into hamster cells by microcell-mediated chromosome transfer to determine whether the propensity for unstable extrachromosomal amplification of the mouse CAD gene would prevail in the hamster cell nuclear environment. We report that the mouse CAD gene was amplified stably in expanded chromosomal regions in each of seven hybrids that were analyzed. This observation is consistent with the idea that the nuclear environment influences whether mutants containing intra- or extrachromosomally amplified sequences will be isolated.  相似文献   

10.
Somatic hybrids obtained by the selective method of Littlefield between a permanent line of Chinese hamster cells (Wg3) and one of mouse cells (3TP) showed a preponderance of biarmed (hamster) chromosomes. Under normal culture conditions (37°) the doubling time of the parental mouse cells was twice as long as that of the parental hamster cells. If the temperature of incubation was lowered (31°), the relative difference in doubling times was reduced; in hybrid lines obtained under these conditions, the proportion of biarmed chromosomes was also reduced. Upon extended cultivation the average number of telocentric chromosomes progressively decreased in all hybrid lines tested, regardless whether these were started and maintained at 37° or at 31°. An inverse correlation was observed in hybrid cells between doubling time and relative proportion of biarmed chromosomes, suggesting that the karyotypic changes observed after extended culture were due to the selective overgrowth of cells with a high biarmed to telocentric ratio.  相似文献   

11.
Hybrid cells are readily formed by fusing clonal Chinese hamster cells to fresh, noncultured, adult mouse spleen cells followed by isolation in selective medium. The vast majority of such hybrids retain Chinese hamster chromosomes and isozymes while segregating mouse chromosomes and isozymes. The growth, plating efficiency, ease of karyology, and rapid segregation of mouse markers allows linkage tests in primary clones. Analysis of 13 isozymes showed 12 to be asyntenic and on epair (PGD-PGM2) to be syntenic This system will allow extensive somatic cell hybrid gene mapping in the mouse and permit a comparison of human and mouse linkage relationships.  相似文献   

12.
The pig chromosome complement of six different types of pig-rodent hybrid cell lines was examined by means of fluorescence in situ hybridization with a porcine SINE probe. The cell lines were obtained by fusing pig lymphocytes with cells of the Chinese hamster cell lines wg3h, BK14-150 and E36, and of the mouse cell lines NSO, PU and LMTK-. The hybrids were analysed with respect to: (1) the number of pig chromosomes, (2) the type of pig chromosomes, (3) the occurrence of pig-rodent chromosome trans-locations, and (4) the presence of pig chromsome fragments. The results show that the number of pig chromosomes varied within and among hybrid cell lines. The pig-hamster hybrids mainly retained nontelocentric pig chromosomes, whereas the pig-mouse hybrids also retained telocentric pig chromosomes. Pig-rodent chromosome translocations were found in all types of hybrids, but the incidence was in general low. Chromosome fragments were abundant in BK14-150 hybrids, and rare in most other hybrid cell lines. It is concluded that the SINE probe is a useful tool to make a preliminary characterization of the porcine chromosome complement of pig-rodent somatic cell hybrids. The results of this characterization can be used to select hybrids for further cytogenetic analysis. Furthermore, our data show that different rodent cell lines will have to be used as fusion partners for the production of hybrids when constructing a panel informative for all pig chromosomes.  相似文献   

13.
Independent hybrid clones resulted from the whole cell and microcell-mediated transfer of hamster or mouse fibroblast chromosomes into mouse hepatoma XXIIa cells. The fusion was promoted with PEG, ethidium bromide alone, or in combination with HAT and ouabain, was used for selecting the hybrids. Using indirect immunoautoradiography, three clones (one intra- and one interspecies microcellular; one interspecies, whole cell fusion) have been found to express their hepatic function to synthesize transferrin. The liver specific protein--albumin--was extinguished in all the hybrid combinations. Possible mechanisms of gene expression are discussed. The hybrids selected could be used for mapping chromosomes, coding proteins, as well as for studying regulation in the tandem of albumin and alpha-fetoprotein genes in the mouse genome. The microcell mediated chromosome transfer into differentiated cells has been used to construct original genetical combinations of regulatory and structural elements of the mouse genome.  相似文献   

14.
The polymerase chain reaction (PCR) technique was used to generate a unique probe complementary to the hydrophobic 5' end of the human cyclophilin B gene. This unique probe was hybridized to DNAs from human x hamster hybrid somatic cell lines retaining different combinations of human chromosomes. The gene was assigned to chromosome 15.  相似文献   

15.
Somatic hybrids of drug-resistant mutant hamster and mouse cell lines have been isolated and propagated in long-term culture and have been studied in respect to karyotype and three enzymes. During the course of propagation the long-surviving hybrid clones show progressive loss of telocentric chromosomes associated in at least one case with loss of mouse enzyme. Hybrid clones showed hybrid molecules for malate dehydrogenase (MDH), lactate dehydrogenase (LDH), and 6-phosphogluconate dehydrogenase (6PGD) made up by recombination of parental subunits.This work was supported by National Institutes of Health Grant HD 00486.  相似文献   

16.
Localization of the casein gene family to a single mouse chromosome   总被引:14,自引:0,他引:14       下载免费PDF全文
A series of mouse-hamster somatic cell hybrids containing a variable number of mouse chromosomes and a constant set of hamster chromosomes have been used to determine the chromosomal location of a family of hormone-inducible genes, the murine caseins. Recombinant mouse cDNA clones encoding the alpha-, beta-, and gamma-caseins were constructed and used in DNA restriction mapping experiments. All three casein cDNAs hybridized to the same set of somatic cell hybrid DNAs isolated from cells containing mouse chromosome 5, while negative hybridization was observed to ten other hybrid DNAs isolated from cells lacking chromosome 5. A fourth cDNA clone, designated pCM delta 40, which hybridized to an abundant 790 nucleotide poly(A)RNA isolated from 6-d lactating mouse mammary tissue, was also mapped to chromosome 5. The chromosomal assignment of the casein gene family was confirmed using a mouse albumin clone. The albumin gene had been previously localized to mouse chromosome 5 by both breeding studies and analogous molecular hybridization experiments. An additional control experiment demonstrated that another hormone-inducible gene, specifying a 620 nucleotide abundant mammary gland mRNA, hybridized to DNA isolated from a different somatic cell hybrid line. These studies represent the first localization of a peptide and steroid hormone-responsive gene family to a single mouse chromosome.  相似文献   

17.
Chinese hamster ovary (CHO) cells are a prevalent tool in biological research and are among the most widely used host cell lines for production of recombinant therapeutic proteins. While research in other organisms has been revolutionized through the development of DNA sequence-based tools, the lack of comparable genomic resources for the Chinese hamster has impeded similar work in CHO cell lines. A comparative genomics approach, based upon the completely sequenced mouse genome, can facilitate genomic work in this important organism. Using chromosome synteny to define regions of conserved linkage between Chinese hamster and mouse chromosomes, a working scaffold for the Chinese hamster genome has been developed. Mapping CHO and Chinese hamster sequences to the mouse genome creates direct access to relevant information in public databases. Additionally, mapping gene expression data onto a chromosome scaffold affords the ability to interpret information in a genomic context, potentially revealing important structural and regulatory features in the Chinese hamster genome. Further development of this genomic scaffold will provide opportunities to use biomolecular tools for research in CHO cell lines today and will be an asset to future efforts to sequence the Chinese hamster genome.  相似文献   

18.
Hybrids between a tumorigenic Chinese hamster cell line (DC3F-aza) and normal mouse thymus cells very rapidly lost most of their mouse chromosomes, whereas hybrids between tumorigenic mouse cell lines (either Cl.1D of L cell line origin, or PCC4-aza1 teratocarcinoma cells) and normal Chinese hamster thymus cells lost most of their hamster chromosomes. From three such fusion experiments, 20 cell lines were developed which all followed the same evolution, namely, the elimination of the majority of the chromosomes contributed by the normal thymus cell. In some hybrids, the elimination process resulted in the total absence of intact chromosomes contributed by the thymus cell parent. Such hybrids were distinguished from revertant parental cells growing in the selective hybrids were distinguished from revertant parental cells growing in the selective medium by the presence of at least one enzyme in their cell extracts which displayed the electrophoretic mobility of the enzyme of the thymus cell parent. These observations, together with data from other reports, suggest that, as a rule, interspecific cell hybrids which develop upon fusion between normal diploid cells and tumorigenic cell lines maintain the chromosomes of the latter and eliminate preferentially many or most of the chromosomes contributed by the normal cell parents, independent of the respective species of the parental cells.  相似文献   

19.
A cytological analysis of 26 polyethylene glycol (PEG) induced human/hamster hybrid lines has shown that such lines are similar to inactivated Sendai virus (ISV) induced hybrids in respect to stability, retention of specific chromosomes, and cell selection. The evolution of stable hybrid cell lines carrying variable human chromosome complements depends upon a balance being established between the retained human and hamster genomes. This balance is a result of random loss of human and hamster chromosomes followed by selection of the fittest stem lines. A major mechanism ofchromosome loss may be fragmentation and elimination of acentric fragments. Twelve of the 26 lines had stabilized by the 30th passage, an incidence similar to that found with ISV-induced hybrids studied in this laboratory. Thus, PEG may be considered to be an ideal chemical for inducing somatic cell hybrids for genetic analysis.  相似文献   

20.
A F Gazdar  H Oie  P Lalley  W W Moss  J D Minna 《Cell》1977,11(4):949-956
The replication patterns of five ecotropic and two amphotropic strains of murine leukemia virus (MuLV) were studied by infecting 41 Chinese hamster x mounse hybrid primary clones segregating mouse (Mus musculus) chromosomes. Ecotropic and amphotropic strains replicated in mouse and some hybrid cells, but not in hamster cells, indicating that replication of exogenous virus requires dominantly expressed mouse cellular genes. The patterns of replication of the five ecotropic strains in hybrid clones were similar; the patterns of replication of the two amphotropic strains were also similar. When compared to each other, however, the replication patterns of ecotropic and amphotropic viruses were dissimilar, indicating that these two classes of MuLV require different mouse chromosomes for replication. Chromosome and isozyme analyses assigned a gene, Rec-1 (replication of ecotropic virus), to mouse chromosome 5 that is necessary and may be sufficient for ecotropic virus replication. Because of preferential retention of mouse chromosomes 15 and 17 in the hybrid clones, however, the possibility that these chromosomes carry genes that are necessary but not sufficient for ecotropic virus replication cannot be excluded. Similarly, the data indicate that mouse chromosome 8 (or possibly 19) carried a gene we have designated Ram-1 (replication of amphotropic virus) which is necessary and may be sufficient for amphotropic virus replication. Because chromosomes 8 and 19 tended to segregate together and two of the three clones excluding 19 have chromosome reaggrangements, we cannot exclude 19 as being independent of amphotropic virus replication. In addition, because of preferential retention, chromosomes 7, 12, 15, 16 and 17 cannot be excluded as being necessary but not sufficient. Hybrid cell genetic studies confirm the assignment of the Fv-1 locus to chromosome 4 previously made by sexual genetics. In addition, our results demonstrate that hybrid cells which have segregated mouse chromosome 4 but have retained 5 become permissive for replication of both N and B tropic strains of MuLV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号