首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase were produced by the conventional hybridoma cell technique. 90 out of 600 hybridomas were found to produce phosphorylase kinase binding antibodies from which only five secreted also phosphorylase kinase activity affecting antibodies. Three of them were cloned; two hybridomas resisted all cloning efforts. Employing immunoblot technique all monoclonal antibodies show cross-reactivity with the alpha, beta, and gamma subunits of phosphorylase kinase indicating that similar, if not identical, epitopes are present on these three subunits. No cross-reactivity with delta is observed. Monoclonal antibodies secreted by two clones which bind to the alpha subunit stimulate the Ca2+-independent A0 activity of phosphorylase kinase more than 30-fold, whereas all other monoclonal antibodies obtained are ineffective in this respect. Monoclonal antibodies binding to the beta subunit inhibit the Ca2+-dependent activities significantly. Antibody produced by one hybridoma binds to the alpha, beta, and gamma subunits with approximately the same affinity. Based on the dual function of calmodulin in phosphorylase kinase (Hessová, Z., Varsányi, M., and Heilmeyer, L.M.G., Jr. (1985) Eur. J. Biochem. 146, 107-115) we conclude that binding of anti-alpha monoclonal antibodies to a regulatory domain in the alpha subunit results in an uncoupling of the inhibitory function of the Ca2+-free delta from the holoenzyme which leads to a concomitant increase in A0 activity. Furthermore, binding of anti-beta monoclonal antibodies to the beta subunit prevents a signal transfer from the Ca2+-saturated delta to the catalytic site of the holoenzyme which inhibits the Ca2+-dependent activities.  相似文献   

2.
Homogeneous alpha and beta subunits were isolated for the first time in preparative amounts in the presence of sodium dodecyl sulfate. Analysis by analytical polyacrylamide electrophoresis, sedimentation velocity, and immunoprecipitation with monospecific antibodies indicated homogeneity. The apparent molecular masses of the purified subunits as determined electrophoretically in the presence of dodecyl sulfate are: alpha = 140.2 +/- 2.1 kDa and beta = 123 +/- 1.8 kDa. Amino acid analyses show that per 100 mol amino acid the alpha-subunit has a higher serine content (Ser alpha/Ser beta = 1.32, Ser alpha/Ser gamma = 1.42) and a lower aspartic acid/asparagine (Asx) content (AsX alpha/Asx beta = 0.76, Asx alpha/Asx gamma = 0.90) than the beta and gamma subunits. Monospecific antibodies against the purified alpha, beta and gamma subunits were produced in sheep [J. Immunol. Methods (1984) 70, 193-209] and their action on the catalytic activity of non-activated phosphorylase kinase assayed. It can be shown that certain antibody fractions of anti-alpha, anti-beta and anti-gamma inhibit the Ca2+-dependent and Ca2+-independent activity at pH 6.8 as well as at pH 8.2. Other antibody fractions against the beta and gamma subunits however activate the Ca2+-dependent activity at pH 6.8 threefold to fourfold, although they inhibit the activity at pH 8.2. These antibodies lead to a ca. five fold increase in the pH 6.8/8.2 activity ratio. Activating anti-beta can even overcome the inhibitory action of anti-alpha at pH 6.8. A kinetic analysis shows that inhibition is the result of a mixed type mechanism whereas activation is due to a fivefold to tenfold increase in V for phosphorylase b. The results illustrate the importance of possibly large, concerted conformational changes of phosphorylase kinase. It appears that activation or inhibition can be triggered by the antibody binding to conformational determinants of a single subunit type leading to a structural alteration of the holoenzyme.  相似文献   

3.
Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) consist of a nucleotide-binding alpha subunit and a high-affinity complex of beta and gamma subunits. There is molecular heterogeneity of beta and gamma, but the significance of this diversity is poorly understood. Different G protein beta and gamma subunits have been expressed both singly and in combinations in Sf9 cells. Although expression of individual subunits is achieved in all cases, beta gamma subunit activity (support of pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1) is detected only when beta and gamma are expressed concurrently. Of the six combinations of beta gamma tested (beta 1 or beta 2 with gamma 1, gamma 2, or gamma 3), only one, beta 2 gamma 1, failed to generate a functional complex. Each of the other five complexes has been purified by subunit exchange chromatography using Go alpha-agarose as the chromatographic matrix. We have detected differences in the abilities of the purified proteins to support ADP-ribosylation of Gi alpha 1; these differences are attributable to the gamma component of the complex. When assayed for their ability to inhibit calmodulin-stimulated type-I adenylylcyclase activity or to potentiate Gs alpha-stimulated type-II adenylylcyclase, recombinant beta 1 gamma 1 and transducin beta gamma are approximately 10 and 20 times less potent, respectively, than the other complexes examined. Prenylation and/or further carboxyl-terminal processing of gamma are not required for assembly of the beta gamma subunit complex but are indispensable for high affinity interactions of beta gamma with either G protein alpha subunits or adenylylcyclases.  相似文献   

4.
In vitro synthesis of G protein beta gamma dimers   总被引:8,自引:0,他引:8  
The guanine nucleotide-binding proteins (G proteins), which play a central role in coupling membrane-bound receptors to intracellular effectors, are heterotrimers composed of alpha, beta, and gamma subunits. The beta and gamma subunits form a functional monomer that does not appear to separate under physiological conditions. This has made it difficult to differentiate the individual roles of beta and gamma subunits in signal transduction. To characterize the individual subunits, the 36-kDa beta subunit (beta 1), brain gamma (gamma 2), and transducin gamma (gamma t) were translated in vitro in a rabbit reticulocyte lysate system. Hydrodynamic studies and tryptic proteolysis were used to compare the physical properties of the in vitro translation products with those of beta gamma dimers purified from bovine brain. The hydrodynamic studies indicate that, without gamma subunits, the beta subunits are not stable but tend to aggregate into high molecular weight complexes. When beta and gamma subunits were co-translated, stable beta gamma dimers formed that bound alpha 0 in a guanine nucleotide-dependent manner. The beta gamma dimers were less hydrophobic than those purified from bovine brain. This may reflect a lack of post-translational modification in the reticulocyte lysate or other differences between the in vitro translation products and the purified beta gamma. When beta and gamma were translated separately and then mixed, beta gamma dimers also formed. Analysis of in vitro translated beta gamma subunits will provide ways to assess the function of these subunits and to determine the structural requirements for beta gamma formation.  相似文献   

5.
A novel gene (Cacng2; gamma(2)) encoding a protein similar to the voltage-activated Ca(2+) channel gamma(1) subunit was identified as the defective gene in the epileptic and ataxic mouse, stargazer. In this study, we analyzed the association of this novel neuronal gamma(2) subunit with Ca(2+) channels of rabbit brain, and the function of the gamma(2) subunit in recombinant neuronal Ca(2+) channels expressed in Xenopus oocytes. Our results showed that the gamma(2) subunit and a closely related protein (called gamma(3)) co-sedimented and co-immunoprecipitated with neuronal Ca(2+) channel subunits in vivo. Electrophysiological analyses showed that gamma(2) co-expression caused a significant decrease in the current amplitude of both alpha(1B)(alpha(1)2.2)-class (36.8%) and alpha(1A)(alpha(1)2.1)-class (39.7%) Ca(2+) channels (alpha(1)beta(3)alpha(2)delta). Interestingly, the inhibitory effects of the gamma(2) subunit on current amplitude were dependent on the co-expression of the alpha(2)delta subunit. In addition, co-expression of gamma(2) or gamma(1) also significantly decelerates the activation kinetics of alpha(1B)-class Ca(2+) channels. Taken together, these results suggest that the gamma(2) subunit is an important constituent of the neuronal Ca(2+) channel complex and that it down-regulates neuronal Ca(2+) channel activity. Furthermore, the gamma(2) subunit likely contributes to the fine-tuning of neuronal Ca(2+) channels by counterbalancing the effects of the alpha(2)delta subunit.  相似文献   

6.
Z Hillel  C W Wu 《Biochemistry》1977,16(15):3334-3342
The quaternary structures of Escherichia coli DNA-dependent RNA polymerase holenzyme (alpha 2 beta beta' sigma) and core enzyme (alpha 2 beta beta') have been investigated by chemical cross-linking with a cleavable bifunctional reagent, methyl 4-mercaptobutyrimidate, and noncleavable reagents, dimethyl suberimidate and N,N'-(1,4-phenylene)bismaleimide. A model of the subunit organization deduced from cross-linked subunit neighbors identified by dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the large beta and beta' subunits constitute the backbone of both core and holoenzyme, while sigma and two alpha subunits interact with this structure along the contact domain of beta and beta' subunits. In holoenzyme, sigma subunit is in the vicinity of at least one alpha subunit. The two alpha subunits are close to each other in holoenzyme, core enzyme, and the isolated alpha 2 beta complex. Cross-linking of the "premature" core and holoenzyme intermediates in the in vitro reconstitution of active enzyme from isolated subunits suggests that these species are composed of subunit complexes of molecular weight lower than that of native core and holoenzyme, respectively. The structural information obtained for RNA polymerase and its subcomplexes has important implications for the enzyme-promoter recognition as well as the mechanism of subunit assembly of the enzyme.  相似文献   

7.
Chemical cross-linking as a probe of conformation has consistently shown that activators, including Ca(2+) ions, of the (alphabetagammadelta)(4) phosphorylase kinase holoenzyme (PhK) alter the interactions between its regulatory alpha and catalytic gamma subunits. The gamma subunit is also known to interact with the delta subunit, an endogenous molecule of calmodulin that mediates the activation of PhK by Ca(2+) ions. In this study, we have used two-hybrid screening and chemical cross-linking to dissect the regulatory quaternary interactions involving these subunits. The yeast two-hybrid system indicated that regions near the C termini of the gamma (residues 343-386) and alpha (residues 1060-1237) subunits interact. The association of this region of alpha with gamma was corroborated by the isolation of a cross-linked fragment of alpha containing residues 1015-1237 from an alpha-gamma dimer that had been formed within the PhK holoenzyme by formaldehyde, a nearly zero-length cross-linker. Because the region of gamma that we found to interact with alpha has previously been shown to contain a high affinity binding site for calmodulin (Dasgupta, M., Honeycutt, T., and Blumenthal, D. K. (1989) J. Biol. Chem. 264, 17156-17163), we tested the influence of Ca(2+) on the conformation of the alpha subunit and found that the region of alpha that interacts with gamma was, in fact, perturbed by Ca(2+). The results herein support the existence of a Ca(2+)-sensitive communication network among the delta, gamma, and alpha subunits, with the regulatory domain of gamma being the primary mediator. The similarity of such a Ca(2+)-dependent network to the interactions among troponin C, troponin I, and actin is discussed in light of the known structural and functional similarities between troponin I and the gamma subunit of PhK.  相似文献   

8.
Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gamma2 and the remainder of the gamma2 or alpha1 subunits, respectively, were expressed with beta2 and beta2gamma2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (alpha1/gamma2)beta2 and (alpha1/gamma2)beta2gamma2 but not the (gamma2/alpha1)beta2 and (gamma2/alpha1)beta2gamma2 subunit combinations formed functional receptor complexes as shown by whole-cell patch-clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (alpha1/gamma2)-containing receptors was pronounced, as opposed to the staining of the (gamma2/alpha1)-containing receptors, which was only slightly higher than background. To explain this, the (alpha1/gamma2) and (gamma2/alpha1) chimeras may act like alpha1 and gamma2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (alpha1/gamma2) chimeric subunit had characteristics different from the alpha1 subunit, since the (alpha1/gamma2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch-clamp recordings, which was independent of whether the chimera was expressed in combination with beta2 or beta2gamma2. Surprisingly, the (alpha1/gamma2)(gamma2/alpha1)beta2 subunit combination did desensitize, indicating that the C-terminal segment of the alpha1 subunit may be important for desensitization. Moreover, desensitization was observed for the (alpha1/gamma2)beta2gamma2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA.  相似文献   

9.
W N Green  A F Ross  T Claudio 《Neuron》1991,7(4):659-666
Different combinations of Torpedo acetylcholine receptor (AChR) subunits stably expressed in mouse fibroblasts were used to establish a role for phosphorylation in AChR biogenesis. When cell lines expressing fully functional AChR complexes (alpha 2 beta gamma delta) were labeled with 32P, only gamma and delta subunits were phosphorylated. Forskolin, which causes a 2- to 3-fold increase in AChR expression by stimulating subunit assembly, increased unassembled gamma phosphorylation, but had little effect on unassembled delta. The forskolin effect on subunit phosphorylation was rapid, significantly preceding its effect on expression. The pivotal role of the gamma subunit was established by treating alpha beta gamma and alpha beta delta cell lines with forskolin and observing increased expression of only alpha beta gamma complexes. This effect was also observed in alpha gamma, but not alpha delta cells. We conclude that the cAMP-induced increase in expression of cell surface AChRs is due to phosphorylation of unassembled gamma subunits, which leads to increased efficiency of assembly of all four subunits.  相似文献   

10.
The GTP-binding regulatory proteins (G proteins) that transduce signals from receptors to effectors are composed of alpha, beta, and gamma subunits. Whereas the role of alpha subunits in directly regulating effector activity is widely accepted, it has recently been demonstrated that beta gamma subunits may also directly regulate effector activity. This has made clear the importance of identifying and characterizing beta and gamma subunits. We have isolated a cDNA clone encoding a new gamma subunit, referred to here as the gamma 7 subunit, using probes based on peptide sequences of a gamma subunit previously purified from bovine brain. The clone contains a 1.47-kilobase cDNA insert, which includes an open reading frame of 204 base pairs that predicts a 68-amino acid polypeptide with a calculated M(r) of 7553. The predicted protein shares amino acid identities with the other known gamma subunits, ranging from 38 to 68%. Also characteristic of gamma subunits is a carboxyl-terminal CAAX motif. The expression of the gamma 7 subunit as well as the gamma 2, gamma 3, and gamma 5 subunits was examined in several bovine tissues at both the mRNA and protein levels. Whereas the gamma 2 and gamma 3 subunits were selectively expressed in brain, the gamma 5 and gamma 7 subunits were expressed in a variety of tissues. Thus, the gamma 5 and gamma 7 subunits are the first G protein gamma subunits known that could participate in the regulation of widely distributed signal transduction pathways.  相似文献   

11.
The beta gamma subunits of G-proteins are composed of closely related beta 35 and beta 36 subunits tightly associated with diverse 6-10 kDa gamma subunits. We have developed a reconstitution assay using rhodopsin-catalyzed guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) binding to resolved alpha subunit of the retinal G-protein transducin (Gt alpha) to quantitate the activity of beta gamma proteins. Rhodopsin facilitates the exchange of GTP gamma S for GDP bound to Gt alpha beta gamma with a 60-fold higher apparent affinity than for Gt alpha alone. At limiting rhodopsin, G-protein-derived beta gamma subunits catalytically enhance the rate of GTP gamma S binding to resolved Gt alpha. The isolated beta gamma subunit of retinal G-protein (beta 1, gamma 1 genes) facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha in a concentration-dependent manner (K0.5 = 254 +/- 21 nM). Purified human placental beta 35 gamma, composed of beta 2 gene product and gamma-placenta protein (Evans, T., Fawzi, A., Fraser, E.D., Brown, L.M., and Northup, J.K. (1987) J. Biol. Chem. 262, 176-181), substitutes for Gt beta gamma reconstitution of rhodopsin with Gt alpha. However, human placental beta 35 gamma facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha with a higher apparent affinity than Gt beta gamma (K0.5 = 76 +/- 54 nM). As an alternative assay for these interactions, we have examined pertussis toxin-catalyzed ADP-ribosylation of the Gt alpha subunit which is markedly enhanced in rate by beta gamma subunits. Quantitative analyses of rates of pertussis modification reveal no differences in apparent affinity between Gt beta gamma and human placental beta 35 gamma (K0.5 values of 49 +/- 29 and 70 +/- 24 nM, respectively). Thus, the Gt alpha subunit alone does not distinguish among the beta gamma subunit forms. These results clearly show a high degree of functional homology among the beta 35 and beta 36 subunits of G-proteins for interaction with Gt alpha and rhodopsin, and establish a simple functional assay for the beta gamma subunits of G-proteins. Our data also suggest a specificity of recognition of beta gamma subunit forms which is dependent both on Gt alpha and rhodopsin. These results may indicate that the recently uncovered diversity in the expression of beta gamma subunit forms may complement the diversity of G alpha subunits in providing for specific receptor recognition of G-proteins.  相似文献   

12.
High threshold L-type Ca2+ channels of skeletal muscle are thought to consist of a complex of alpha 1, alpha 2 delta, beta, and gamma subunits. Expression of the cloned alpha 1 subunit from skeletal and cardiac muscle has established that this protein is the dihydropyridine-sensitive ion-conducting subunit. However, the kinetics of the skeletal muscle alpha 1 alone expressed in mouse L-cells were abnormally slow and were accelerated to within the normal range by coexpression with the skeletal muscle beta subunit. The kinetics of cardiac muscle alpha 1 were also slowed but to a lesser extent and were not altered by coexpression with skeletal muscle alpha 2. We show here that coexpression of the skeletal muscle beta subunit with the cardiac alpha 1 subunit in Xenopus laevis oocytes produced: 1) an increase in the peak voltage-sensitive current, 2) a shift of the peak current-voltage relationship to more hyperpolarized potentials, and 3) an increase in the rate of activation. Coexpression of the skeletal muscle gamma subunit did not have a significant effect on currents elicited by alpha 1. However, when gamma was coexpressed with beta and alpha 1, both peak currents and rates of activation at more negative potentials were increased. These results indicate that rather than simply amplifying expression of alpha 1, heterologous skeletal muscle beta and gamma subunits can modulate the biophysical properties of cardiac alpha 1.  相似文献   

13.
The properties of the gating currents (nonlinear charge movements) of human cardiac L-type Ca2- channels and their relationship to the activation of the Ca2+ channel (ionic) currents were studied using a mammalian expression system. Cloned human cardiac alpha1 + rabbit alpha 2 subunits or human cardiac alpha 1 + rabbit alpha 2 + human beta 3 subunits were transiently expressed in HEK293 cells. The maximum Ca2+ current density increased from -3.9 +/- 0.9 pA/pF for the alpha 1 + alpha 2 subunits to -11.6 +/- 2.2 pA/pF for alpha 1 + alpha 2 + beta 3 subunits. Calcium channel gating currents were recorded after the addition of 5 mM Co2+, using a -P/5 protocol. The maximum nonlinear charge movement (Qmax) increased from 2.5 +/- 0.3 nC/muF for alpha 1 + alpha 2 subunit to 12.1 +/- 0.3 nC/muF for alpha 1 + alpha 2 + beta 3 subunit expression. The QON was equal to the QOFF for both subunit combinations. The QON-Vm data were fit by a sum of two Boltzmann expressions and ranged over more negative potentials, as compared with the voltage dependence for activation of the Ca2+ conductance. We conclude that 1) the beta subunit increases the number of functional alpha 1 subunits expressed in the plasma membrane of these cells and 2) the voltage-dependent activation of the human cardiac L-type calcium channel involves the movements of at least two nonidentical and functionally distinct gating structures.  相似文献   

14.
Little is known about the specific domains of G protein beta and gamma subunits which interact with each other and with the alpha subunit. We used site-specific anti-peptide antibodies directed against beta and gamma subunits to investigate domains on beta and gamma subunits involved in alpha subunit interaction. Antibodies included four against the transducin (Gt) beta subunit (residues 1-10 = MS, 127-136 = KT, 256-265 = RA, and 330-340 = SW) and two against the gamma subunit (residues 2-12 = PV and 58-68 = PE). All antisera, when affinity-purified on peptide columns, yielded antibodies capable of recognizing the denatured cognate subunit on immunoblots, but only RA, SW, PV, and PE recognized native beta gamma t subunits. Affinity purification of MS and KT antisera on columns of immobilized native Gt yielded antibodies capable of recognizing native beta gamma t subunits. The functional effects of each antibody preparation on alpha t-beta gamma t interaction were assessed by assaying the ability of the preparations to immunoprecipitate beta gamma t subunits in the presence of excess alpha subunits and by testing the inhibition of beta gamma t-dependent ADP-ribosylation of alpha t-subunits catalyzed by pertussis toxin. On the basis of the results, we conclude that the domains on beta gamma t which may be directly involved in alpha t-beta gamma t interaction include the extreme amino terminus, residues 127-136 and 256-265 of beta t, and the carboxyl terminus of gamma t.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Voltage-dependent calcium channels (VDCCs) are heteromultimers composed of a pore-forming alpha1 subunit and auxiliary subunits, including the intracellular beta subunit, which has a strong influence on the channel properties. Voltage-dependent inhibitory modulation of neuronal VDCCs occurs primarily by activation of G-proteins and elevation of the free G beta gamma dimer concentration. Here we have examined the interaction between the regulation of N-type (alpha 1 B) channels by their beta subunits and by G beta gamma dimers, heterologously expressed in COS-7 cells. In contrast to previous studies suggesting antagonism of G protein inhibition by the VDCC beta subunit, we found a significantly larger G beta gamma-dependent inhibition of alpha 1 B channel activation when the VDCC alpha 1 B and beta subunits were coexpressed. In the absence of coexpressed VDCC beta subunit, the G beta gamma dimers, either expressed tonically or elevated via receptor activation, did not produce the expected features of voltage-dependent G protein modulation of N-type channels, including slowed activation and prepulse facilitation, while VDCC beta subunit coexpression restored all of the hallmarks of G beta gamma modulation. These results suggest that the VDCC beta subunit must be present for G beta gamma to induce voltage-dependent modulation of N-type calcium channels.  相似文献   

16.
Elongation factor 1 (EF-1) from the silk gland of Bombyx mori consists of four subunits: alpha (51 kDa), beta (26 kDa), gamma (49 kDa), and delta (33 kDa). The EF-1alpha subunit catalyzes the binding of aminoacyl-tRNA to the ribosome concomitant with the hydrolysis of GTP. The EF-1alpha-bound GDP is then exchanged for GTP by the EF-1betagammadelta complex. To facilitate analysis of the roles of the individual EF-1beta, gamma, and delta subunits in GDP/GTP exchange on EF-1alpha, we cloned the cDNAs for these subunits and expressed them in Escherichia coli. EF-1beta, EF-1gamma, and the carboxyl-terminal half of EF-1delta were expressed, purified, and examined for protein:protein interactions by gel filtration chromatography and by a quartz-crystal microbalance method. An 80-kDa species containing EF-1beta and gamma subunits in a 1:1 molar ratio was detected by gel filtration. A higher molecular weight species containing an excess of EF-1gamma relative to EF-1beta was also detected. The amino-terminal region of EF-1beta (amino acid residues 1-129) was sufficient for binding to EF-1gamma. The carboxyl-terminal half of EF-1delta did not appear to form a complex with EF-1gamma.  相似文献   

17.
Altogether 2 holoenzymes and 4 catalytic CK2 constructs were expressed and characterized i.e. CK2alpha (2) (1-335) beta(2); CK2alpha'-derived holoenzyme; CK2alpha(1-335); MBP-CK2alpha'; His-tagged CK2alpha and His-tagged CK2alpha'. The two His-tagged catalytic subunits were expressed in insect cells, all others in Escherichia coli. IC(50) studies involving the established CK2 inhibitors DMAT, TBBt, TBBz, apigenin and emodin were carried out and the K(i) values calculated. Although the differences in the K(i) values found were modest, there was a general tendency showing that the CK2 holoenzymes were more sensitive towards the inhibitors than the free catalytic subunits. Thermal inactivation experiments involving the individual catalytic subunits showed an almost complete loss of activity after only 2 min at 45 degrees C. In the case of the two holoenzymes, the CK2alpha'-derived holoenzyme lost ca. 90% of its activity after 14 min, whereas CK2alpha (2) (1-335) beta(2) only showed a loss of ca. 40% by this time of incubation. Gel filtration analyses were performed at high (500 mM) and low (150 mM) monovalent salt concentrations in the absence or presence of ATP. At 500 mM NaCl the CK2alpha'-derived holoenzyme eluted at a position corresponding to a molecular mass of 105 kDa which is significantly below the elution of the CK2alpha (2) (1-335) beta(2) holoenzyme (145 kDa). Calmodulin was not phosphorylated by either CK2alpha (2) (1-335) beta(2) or the CK2alpha'-derived holoenzyme. However, in the presence of polylysine only the CK2alpha (2) (1-335) beta(2) holoenzyme could use calmodulin as a substrate such as the catalytic subunits, in contrast to the CK2alpha'-derived holoenzyme which only phosphorylated calmodulin weakly. This attenuation may be owing to a different structural interaction between the catalytic CK2alpha' subunit and non-catalytic CK2beta subunit.  相似文献   

18.
In Zajdela hepatoma cells (ZHC) the plasma membrane Ca2+ pump displayed no sensitivity to glucagon (19-29) (mini-glucagon), whereas in hepatocyte this metabolite of glucagon evoked a biphasic regulation of the Ca2+ pump system via a cholera toxin-sensitive G protein. Analysis of G protein subunits in ZHC membranes indicated the presence of cholera toxin-sensitive Gs alpha and G beta gamma proteins, whose functionality was manifested by GTP and NaF stimulation of adenylylcyclase activity, and pertussis toxin-catalyzed ADP-ribosylation of Gi alpha, respectively. However, immunoblotting experiments suggested a lower content in beta gamma subunits in ZHC as compared with hepatocyte plasma membranes. Complementation of ZHC or hepatocyte plasma membranes with purified beta gamma subunits from transducin (T beta gamma) caused inhibition of the basal activity of the Ca2+ pump at 10 and 300 ng/ml, respectively, and revealed (in ZHC) or increased (in hepatocytes) sensitivity of the system to mini-glucagon. After cholera toxin treatment of ZHC, T beta gamma no longer reconstituted the response of the Ca2+ pump to mini-glucagon, suggesting that the mechanism of beta gamma action is dependent on an association with the alpha subunit of a cholera toxin-sensitive G protein. It is concluded that G beta gamma subunits control both the basal activity of the plasma membrane Ca2+ pump and its inhibition by mini-glucagon.  相似文献   

19.
The major isoform of the gamma-aminobutyric acid type A (GABA(A)) receptor is thought to be composed of 2alpha(1), 2beta(2), and 1gamma(2) subunit(s), which surround the ion pore. Definite evidence for the subunit arrangement is lacking. We show here that GABA(A) receptor subunits can be concatenated to a trimer that can be functionally expressed upon combination with a dimer. Many combinations did not result in the functional expression. In contrast, four different combinations of triple subunits with dual subunit constructs, all resulting in the identical pentameric receptor gamma(2)beta(2)alpha(1)beta(2)alpha(1), could be successfully expressed in Xenopus oocytes. We characterized the functional properties of these receptors in respect to agonist, competitive antagonist, and diazepam sensitivity. All properties were similar to those of wild type alpha(1)beta(2)gamma(2) GABA(A) receptors. Thus, together with information on the crystal structure of the homologous acetylcholine-binding protein (Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van Der Oost, J., Smit, A. B., and Sixma, T. K., (2001) Nature 411, 269-276, we provide evidence for an arrangement gamma(2)beta(2)alpha(1)beta(2)alpha(1), counterclockwise when viewed from the synaptic cleft. Forced subunit assembly will also allow receptors containing different subunit isoforms or mutant subunits to be expressed, each in a desired position. The methods established here should be applicable to the entire ion channel family comprising nicotinic acetylcholine, glycine, and 5HT(3) receptors.  相似文献   

20.
Phosphorylase kinase, a regulatory enzyme of glycogenolysis in skeletal muscle, is a hexadecameric oligomer consisting of four copies each of a catalytic subunit (gamma) and three regulatory subunits (alpha, beta, and delta, the last being endogenous calmodulin). The enzyme is activated by a variety of effectors acting through its regulatory subunits. To probe the quaternary structure of nonactivated and activated forms of the kinase, we used the heterobifunctional, photoreactive cross-linker N-5-azido-2-nitrobenzoyloxysuccinimide. Mono-derivatization of the holoenzyme with the succinimidyl group, followed by photoactivation of the covalently attached azido group, resulted in intramolecular cross-linking to form two distinct heterodimers: a major (alphagamma) and a minor (betadelta) conjugate. Formation of both conjugates was significantly altered in activated conformations of the enzyme induced by phosphorylation, alkaline pH, and several allosteric activators (ADP, exogenous calmodulin/Ca2+, and Ca2+ alone). Of these activating mechanisms, all increased formation of alphagamma, except Ca2+ alone, which inhibited its formation. When cross-linking was carried out at alkaline pH or in the presence of ADP or exogenous calmodulin/Ca2+, the cross-linked enzyme remained activated following removal of the activators; however, cross-linking in the presence of Ca2+ resulted in sustained inhibition. The results indicate that perturbations in the subunit cross-linking forming the alphagamma dimer reflect the subsequent extent of sustained activation of the holoenzyme that is measured. The region cross-linked to the catalytic gamma subunit was confined to the C-terminal 1/6th of the alpha subunit, which contains known regulatory regions. These results suggest that activators of the phosphorylase kinase holoenzyme perturb interactions between the C-terminal region of the inhibitory alpha subunit and the catalytic gamma subunit, ultimately leading to activation of the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号