首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For some wildlife commodities, rare species are especially sought after. The tendency for rare commodities to be of higher value can fuel their exploitation and as numbers dwindle, the demand can increase. Consequently, this can precipitate these rare species into an overexploitation vortex where they become increasingly rare, valued and exploited until eventual extinction. We focus here on the hobby of collecting stag beetles, to ascertain if the market value of these items is driven by rarity and if, consequently, these species are vulnerable to this overexploitation vortex. Stag beetle collections fuel a large and lucrative market in Japan, involving more than 700 species from all over the world, with over 15 million specimens imported a year. Some particularly valued species fetch more than US$5,000 a piece. We assessed the importance of species rarity as an acquisition criterion in this market using two methods: an Internet online questionnaire responded to by 509 participants and through examining the quantities imported in Japan and prices paid by collectors. We discovered that species rarity is one of the main choice criteria for acquisition by collectors: rare stag beetles are valued more than the common species and, consequently, stag beetles are vulnerable to the anthropogenic Allee effect in this market. Because of the sheer size of the market and the pervasive nature of this rarity paradox, the attraction to rarity equates to a potential extinction threat for many rare stag beetles species.  相似文献   

2.
3.
Natural landscapes characterized by heavy disturbance regimes were displaced in Europe by managed cultural landscapes over the past centuries. The associated loss of biological legacies, such as dead or dying trees, has exposed numerous saproxylic species to high risks of extinction. In contrast, extensive wilderness forests in Northern Mongolia have been sustained owing to significant cultural differences. Here we used saproxylic beetle abundance data gathered during two sampling campaigns in the Mongolian taiga to address whether (1) the saproxylic beetle fauna of the Mongolian taiga is comparable to that of European boreal forests, (2) fires are a natural disturbance regime, indicated by the occurrence of many pyrophilous species, and (3) species rare in Europe are also rare in the Northern Mongolian wilderness. Of 191 saproxylic beetle species identified, 150 (79 %) were also found in Europe. The high number of pyrophilous beetle species (20) indicated that natural species communities are well adapted to this disturbance regime. The species rarity in Germany was significantly positively correlated with the species rarity in Finland, but the species rarity in these two countries was negatively correlated with that in the Mongolian wilderness. Our results indicated that wilderness areas with natural disturbances provide biological legacies important for rare species. Therefore, exploitation of the unique, remaining natural landscapes of the Palaearctic wilderness areas should be stopped. Moreover, we urge conservationists to expand controlled burning for restoration at relict sites of rare boreal species also outside Fennoscandia.  相似文献   

4.
This paper attempts to use museum collection data to estimate measures of species rarity and then to relate these measures to extinction risk. For this purpose, 170 taxa (138 species and 32 subspecies) of tenebrionid beetles from 32 Aegean Islands (Greece) were considered. For each taxon, rarity was evaluated as geographic distribution (mean incidence on islands in the archipelago), potential habitat exploitation (total area of the islands occupied on the total area of the study system) and contactability (number of decades of taxon’s records on the total number of decades of assumed persistence from 1870 to 2000). All of these indices were correlated to each other. Whether expressed in terms of range size or habitat exploitation rarity was a major determinant of a species’ risk of extinction (evaluated as extinction decade). Thus, the designation of rarity provides a good basis for identifying species that are most in need of conservation at a particular scale.  相似文献   

5.
Rarity is widely used to predict the vulnerability of species to extinction. Species can be rare in markedly different ways, but the relative impacts of these different forms of rarity on extinction risk are poorly known and cannot be determined through observations of species that are not yet extinct. The fossil record provides a valuable archive with which we can directly determine which aspects of rarity lead to the greatest risk. Previous palaeontological analyses confirm that rarity is associated with extinction risk, but the relative contributions of different types of rarity to extinction risk remain unknown because their impacts have never been examined simultaneously. Here, we analyse a global database of fossil marine animals spanning the past 500 million years, examining differential extinction with respect to multiple rarity types within each geological stage. We observe systematic differences in extinction risk over time among marine genera classified according to their rarity. Geographic range played a primary role in determining extinction, and habitat breadth a secondary role, whereas local abundance had little effect. These results suggest that current reductions in geographic range size will lead to pronounced increases in long-term extinction risk even if local populations are relatively large at present.  相似文献   

6.
China is one of the countries with the richest snake biodiversity in the world. However, about one‐third of all 236 species are now considered threatened, partially due to the intense human overexploitation. Despite that, to date, no study has explicitly investigated the patterns and processes of extinction and threats of Chinese snakes, or between human exploited and unexploited snake subgroups. We addressed the following three questions: 1) which snake families proportionally include more human exploited species than expected by chance? 2) Which species traits and extrinsic factors are correlated with their extinction risk? 3) Are there differences between human exploited and unexploited species in terms of patterns and processes of extinction? We found that the family Elapidae contained a significantly higher number of exploited species. Considering eight species traits and four extrinsic factors, we performed phylogenetic correlation tests, finding that small geographic range size, large body length, oviparous reproduction, diurnal activity and high human exploitation were important in determining the extinction risk of all Chinese snakes. Moreover, human exploited snakes had a higher percentage of threatened species and large‐bodied species than unexploited snakes. Extinction risk of human exploited species was related to body length, reproduction mode and activity period, whereas that of human unexploited species were associated with geographic range size, microhabitat and annual temperature. Overall, we highlight the phylogenetic non‐random exploitation of snakes, and different factors underlying species response to human overexploitation. We suggest that conservation priority should be given to exploitation‐prone families and species with extinction‐prone traits, as identified in this study. Moreover, human exploited and unexploited species should be managed considering different strategies since their extinction risk was associated with different ecological traits. Conservation actions should also focus on preventing human threats, such as human overexploitation and habitat loss, for the effective preservation of Chinese snakes.  相似文献   

7.
That spatially rare species may be predisposed to extinction is a common tenet of ecology. However, the opposite side of the relationship – how extinction alters spatial rarity – remains little explored. We used an extensive biodiversity database to contrast patterns of spatial rarity of a biogeographic assemblage of native Sonoran fishes before and after an extensive, decades-long wave of extirpations. Focusing on 25 fish species native to the Lower Basin of the Colorado River, we analyzed two key aspects of spatial rarity: 1) species range sizes (expressed as kilometers of stream reach occupied) and 2) species' co-occurrence patterns. Native fish species that were spatially rare historically suffered disproportionate losses in occurrences. However, endemic species did not suffer increased losses relative to non-endemic (but still native) species of comparable rarity. Species' geographic range sizes were concordant through time, with spatially rare species remaining rare after extensive extirpations relative to species that were historically more widespread. In contrast, extirpations greatly disrupted patterns of species co-occurrence on both local and regional scales. Over 50% of the species pairs that historically co-occurred (in the same 5  km reach) no longer co-occur anywhere in the Lower Basin, and species pairs that infrequently co-occurred in historic times suffered greater proportional losses than did more widely co-occurring pairs. Such changes in the relationship between spatial rarity and species richness deserve attention because they inhibit conservation planning (decreasing the efficiency of reserve design) and reduce interaction diversity altering opportunities for long-term co-evolutionary change.  相似文献   

8.

Background  

Rare species have seldom been studied in marine habitats, mainly because it is difficult to formally assess the status of rare species, especially in patchy benthic organisms, for which samplings are often assumed to be incomplete and, thus, inappropriate for establishing the real abundance of the species. However, many marine benthic invertebrates can be considered rare, due to the fragmentation and rarity of suitable habitats. Consequently, studies on the genetic connectivity of rare species in fragmented habitats are basic for assessing their risk of extinction, especially in the context of increased habitat fragmentation by human activities. Sponges are suitable models for studying the intra- and inter-population genetic variation of rare invertebrates, as they produce lecitotrophic larvae and are often found in fragmented habitats.  相似文献   

9.
Wildlife trade is a key driver of extinction risk, affecting at least 24% of terrestrial vertebrates. The persistent removal of species can have profound impacts on species extinction risk and selection within populations. We draw together the first review of characteristics known to drive species use – identifying species with larger body sizes, greater abundance, increased rarity or certain morphological traits valued by consumers as being particularly prevalent in trade. We then review the ecological implications of this trade-driven selection, revealing direct effects of trade on natural selection and populations for traded species, which includes selection against desirable traits. Additionally, there exists a positive feedback loop between rarity and trade and depleted populations tend to have easy human access points, which can result in species being harvested to extinction and has the potential to alter source–sink dynamics. Wider cascading ecosystem repercussions from trade-induced declines include altered seed dispersal networks, trophic cascades, long-term compositional changes in plant communities, altered forest carbon stocks, and the introduction of harmful invasive species. Because it occurs across multiple scales with diverse drivers, wildlife trade requires multi-faceted conservation actions to maintain biodiversity and ecological function, including regulatory and enforcement approaches, bottom-up and community-based interventions, captive breeding or wildlife farming, and conservation translocations and trophic rewilding. We highlight three emergent research themes at the intersection of trade and community ecology: (1) functional impacts of trade; (2) altered provisioning of ecosystem services; and (3) prevalence of trade-dispersed diseases. Outside of the primary objective that exploitation is sustainable for traded species, we must urgently incorporate consideration of the broader consequences for other species and ecosystem processes when quantifying sustainability.  相似文献   

10.
The reasons for plant rarity have been the focus of many studies, especially because rare species are more prone to extinction than common species. Under the same habitat conditions, rare plants are expected to attract fewer flower visitors and to show some limitation in their reproductive success. Here, using one of the most emblematic Neotropical plant genus (Tibouchina) we tested whether narrow endemic and threatened species in Ecuador have a lower reproductive success or are visited by fewer pollinators than common species, in 13 populations monitored from 2011 to 2013. We also assessed whether interspecific gene flow could be considered a threat to the rare species. However, contrary to expectations, we found that few pollinators visited the flowers, independently of species rarity. Natural outcross pollinations were always very low in all small‐size populations, leading to high levels of pollen limitation. Interspecific crossing experiments also revealed weak reproductive barriers in some species. This study reveals that both narrow and common species of Tibouchina have similar reproductive and pollinator patterns in Ecuador and, therefore, other causes of the rarity of these species should be considered.  相似文献   

11.
Rarity is a population characteristic that is usually associated with a high risk of extinction. We argue here, however, that chronically rare species (those with low population densities over many generations across their entire ranges) may have individual‐level traits that make populations more resistant to extinction. The major obstacle to persistence at low density is successful fertilisation (union between egg and sperm), and chronically rare species are more likely to survive when (1) fertilisation occurs inside or close to an adult, (2) mate choice involves long‐distance signals, (3) adults or their surrogate gamete dispersers are highly mobile, or (4) the two sexes are combined in a single individual. In contrast, external fertilisation and wind‐ or water‐driven passive dispersal of gametes, or sluggish or sedentary adult life habits in the absence of gamete vectors, appear to be incompatible with sustained rarity. We suggest that the documented increase in frequency of these traits among marine genera over geological time could explain observed secular decreases in rates of background extinction. Unanswered questions remain about how common chronic rarity actually is, which traits are consistently associated with chronic rarity, and how chronically rare species are distributed among taxa, and among the world's ecosystems and regions.  相似文献   

12.
Hot spots of endemism are regarded as important global sites for conservation as they are rich in threatened endemic species and currently experiencing extensive habitat loss. Targeting pre-emptive conservation action to sites that are currently relatively intact but which would be vulnerable to particular human activities if they occurred in the future is, however, also valuable but has received less attention. Here, we address this issue by using data on Endemic Bird Areas (EBAs). First, we identify the ecological factors that affect extinction risk in the face of particular human activities, and then use these insights to identify EBAs that should be priorities for pre-emptive conservation action. Threatened endemic species in EBAs are significantly more likely to be habitat specialists or relatively large-bodied than non-threatened species, when compared across avian families. Increasing habitat loss causes a significant increase in extinction risk among habitat specialists, but we found no evidence to suggest that the presence of alien species/human exploitation causes a significant increase in extinction risk among large-bodied species. This suggests that these particular human activities are contributing to high extinction risk among habitat specialists, but not among large-bodied species. Based on these analyses, we identify 39 EBAs containing 570 species (24% of the total in EBAs) that are not currently threatened with severe habitat loss, but would be ecologically vulnerable to future habitat loss should it occur. We show that these sites tend to be poorly represented in existing priority setting exercises involving hot spots, suggesting that vulnerability must be explicitly included within these exercises if such sites are to be adequately protected.  相似文献   

13.
Taxon size predicts rates of rarity in vascular plants   总被引:2,自引:2,他引:0  
We surveyed rarity in the vascular plants of the continental U.S.A. and Canada and the vascular plants of Hawaii to test the hypothesis that rates of rarity are independent of taxonomic group size. We demonstrated that taxonomic groups of plants with few species consistently contained fewer than the expected numbers of rare species. This pattern was apparent at the levels of genus, family, order and class. We also found that the pattern remained when we examined rates of rarity by comparing sister taxa that share a common ancestor. This pattern may arise from either differential speciation and extinction patterns or taxonomic bias in species designations (lumping and splitting). The pattern of lineages with few species demonstrating reduced rates of rarity is opposite to that previously observed in mammals and birds. If the protection of representatives from a diversity of lineages is a conservation objective, plant conservation is facilitated by the fact that relatively few species-poor lineages contain rare species.  相似文献   

14.

Habitat loss and fragmentation would often induce delayed extinction, referred to as extinction debt. Understanding potential extinction debts would allow us to reduce future extinction risk by restoring habitats or implementing conservation actions. Although growing empirical evidence has predicted extinction debts in various ecosystems exposed to direct human disturbances, potential extinction debts in natural ecosystems with minimal direct human disturbance are little studied. Ongoing climate change may cause habitat loss and fragmentation, particularly in natural ecosystems vulnerable to environmental change, potentially leading to future local extinctions. Recent climate change would lead to extended growing season caused by earlier snowmelt in spring, resulting in expansion of shrubby species and thereby habitat loss and fragmentation of mountainous moorlands. We examined the potential extinction debts of species diversity and functional diversity (FD; trait variation or multivariate trait differences within a community) in subalpine moorland ecosystems subjected to few direct human disturbances. Plant species richness for all species and for moorland specialists were primarily explained by the past kernel density of focal moorlands (a proxy for spatial clustering of moorlands around them) but not the past area of the focal moorlands, suggesting potential extinction debt in subalpine moorland ecosystems. The higher kernel density of the focal moorland in the past indicates that it was originally surrounded by more neighborhood moorlands and/or had been locally highly fragmented. Patterns in current plant species richness have been shaped by the historical spatial configuration of moorlands, which have disappeared over time. In contrast, we found no significant relationships between the FD and historical and current landscape variables depicting each moorland. The prevalence of trait convergence might result in a less sensitive response of FD to habitat loss and fragmentation compared to that of species richness. Our finding has an important implication that climate change induced by human activities may threaten biodiversity in natural ecosystems through habitat loss and fragmentation.

  相似文献   

15.
Species can be rare or common in three different dimensions: geographic range size, habitat breadth, and local abundance. Understanding drivers of rarity are not only fundamentally interesting; it is also pertinent for their conservation. We addressed this challenge by analyzing the rarity of 291 native freshwater fishes occurring in ca 3500 independent stream reaches that span a broad environmental gradient across continental USA. Using phylogenetic regression and path analysis, we examined the concordance among the three rarity dimensions, and identified possible mechanisms by which species life‐history, habitat affinities, and biogeography drive variation in rarity. Weak double extinction jeopardies were driven by weakly positive correlations between habitat breadth and local abundance, and between habitat breadth and geographic range size. However, a triple extinction jeopardy was averted as local abundance and range size were not positively linked in our study. This is because large‐river and lacustrine habitat use mediated a trade‐off between local abundance and range size. Large rivers and lacustrine habitats represent important dispersal pathways and refugia that enabled fishes to acquire wide ranges; however, species using these habitats are less abundant overall because they are less adapted to small lotic channels, which comprise the majority of stream habitats in the US. Life‐history traits were key in governing the relationship between abundance and range size as large‐river and lacustrine habitat use were driven by body size, egg size, and parental care. Our analysis contributes novel insights into mechanisms that underlie multiple dimensions of rarity in freshwater fish and informs the prioritization of multiply rare species for conservation.  相似文献   

16.
Rare species are important targets for biodiversity conservation efforts because rarity often equates to small populations and increased endangerment. Rare species are prone to stochastic extinction events and may be particularly susceptible to catastrophes. Therefore, understanding how rare species respond to disturbances is critical for evaluating extinction risk and guiding conservation managers. Population viability analyses (PVAs) are essential for assessing rare species' status yet they seldom consider catastrophic events. Accordingly, we present a PVA of a rare tropical epiphyte, Lepanthes caritensis (Orchidaceae), under simulated disturbance regimes to evaluate its demographics and extinction risk. We aimed to test how demographic models incorporating catastrophes affect population viability estimates. Our goal was to better guide management of these orchids and other rare plants. Results revealed L. caritensis numbers have declined recently, but projected growth rates indicated that most subpopulations should increase in size if undisturbed. Still, projection models show that moderate catastrophes reduce growth rates, increase stochasticity in subpopulation sizes, and elevate extinction risk. Severe catastrophes had a more pronounced effect in simulations; growth rates fell below replacement level, there was greater variation in projected population sizes, and extinction risk was significantly higher. PVAs incorporating periodic catastrophes indicate that rare species may have greater extinction probabilities than standard models suggest. Thus, precautionary conservation measures should be taken in disturbance prone settings and we encourage careful monitoring after environmental catastrophes. Future rare plant PVAs should incorporate catastrophes and aim to determine if rescue and reintroduction efforts are necessary after disturbances to insure long-term population viability.  相似文献   

17.
Parthenogenesis is rare in nature. With 39 described true parthenogens, scaled reptiles (Squamata) are the only vertebrates that evolved this reproductive strategy. Parthenogenesis is ecologically advantageous in the short term, but the young age and rarity of parthenogenetic species indicate it is less advantageous in the long term. This suggests parthenogenesis is self-destructive: it arises often but is lost due to increased extinction rates, high rates of reversal or both. However, this role of parthenogenesis as a self-destructive trait remains unknown. We used a phylogeny of Squamata (5388 species), tree metrics, null simulations and macroevolutionary scenarios of trait diversification to address the factors that best explain the rarity of parthenogenetic species. We show that parthenogenesis can be considered as self-destructive, with high extinction rates mainly responsible for its rarity in nature. Since these parthenogenetic species occur, this trait should be ecologically relevant in the short term.  相似文献   

18.
The emerging interest in the biological and conservation significance of locally rare species prompts a number of questions about their correspondence with other categories of biodiversity, especially global rarity. Here we present an analysis of the correspondence between the distributions of globally and locally rare plants. Using biological hotspots of rarity as our framework, we evaluate the extent to which conservation of globally rare plants will act as a surrogate for conservation of locally rare taxa. Subsequently, we aim to identify gaps between rarity hotspots and protected land to guide conservation planning. We compiled distribution data for globally and locally rare plants from botanically diverse Napa County, California into a geographic information system. We then generated richness maps highlighting hotspots of global and local rarity. Following this, we overlaid the distribution of these hotspots with the distribution of protected lands to identify conservation gaps. Based on occupancy of 1 km2 grid cells, we found that over half of Napa County is occupied by at least one globally or locally rare plant. Hotspots of global and local rarity occurred in a substantially smaller portion of the county. Of these hotspots, less than 5% were classified as multi-scale hotspots, i.e. they were hotspots of global and local rarity. Although, several hotspots corresponded with the 483 km2 of protected lands in Napa County, some of the richest areas did not. Thus, our results show that there are important conservation gaps in Napa County. Furthermore, if only hotspots of global rarity are preserved, only a subset of locally rare plants will be protected. Therefore, conservation of global, local, and multi-scale hotspots needs serious consideration if the goals are to protect a larger variety of biological attributes, prevent extinction, and limit extirpation in Napa County.  相似文献   

19.
Determining differences between common and rare species is commonly used to identify factors responsible for rarity. Existing studies, however, suffer from two important drawbacks. First, studies compare species that are closely related phylogenetically but occupy different habitats. Second, these studies concentrate on single life history traits, with unknown relevance for population growth rates. Complete life cycles of one rare and one common Cirsium species sharing the same habitat were compared. Population growth rate was slightly lower in the rare species, translating into a large difference in local extinction probability. Seed predation intensity did not differ between species. However, it can be demonstrated that in connection with the data on complete demography, seed predation is the key factor causing a lower population growth rate in the rare species. These results are the first estimation of factors responsible for commonness or rarity of plants in terms of population growth rate without confounding differences in ecology. They demonstrate that conclusions based on single traits may be misleading and that only a comparison based on a complete life cycle can provide unequivocal evidence for concluding which factors are really those responsible for species commonness or rarity.  相似文献   

20.

Aim

Rare species typically contribute more to functional diversity than common species. However, humans have altered the occupancy and abundance patterns of many species—the basis upon which we define “rarity.” Here, we use a globally unique dataset from hydrothermal vents—an untouched ecosystem—to test whether rare species over‐contribute to functional diversity.

Location

Juan de Fuca Ridge hydrothermal vent fields, Northeast Pacific Ocean.

Methods

We first conduct a comprehensive review to set up expectations for the relative contributions of rare and common species to functional diversity. We then quantify the rarity and commonness of 37 vent species with relevant trait information to assess the relationship between rarity and functional distinctiveness—a measure of the uniqueness of the traits of a species relative to traits of coexisting species. Next, we randomly assemble communities to test whether rare species over‐contribute to functional diversity in artificial assemblages ranging in species richness. Then, we test whether biotic interactions influence functional diversity contributions by comparing the observed contribution of each species to a null expectation. Finally, we identify traits driving functional distinctiveness using a distance‐based redundancy analysis.

Results

Across functional diversity metrics and species richness levels, we find that both rare and common species can contribute functional uniqueness. Some species always offer unique trait combinations, and these species host bacterial symbionts and provide habitat complexity. Moreover, we find that contributions of species to functional diversity may be influenced by biotic interactions.

Main conclusions

Our findings show that many common species make persistent, unique contributions to functional diversity. Thus, it is key to consider whether the abundance and occupancy of species have been reduced, relative to historical baselines, when interpreting the contributions of rare species to functional diversity. Our work highlights the importance of testing ecological theory in ecosystems unaffected by human activities for the conservation of biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号