首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
 In an effort to initiate steps designed to characterize the idiopathic hemochromatosis disease gene, the HLA-A/HLA-F region where this gene is in disequilibrium linkage with some polymorphic markers has been overlapped by a yeast artificial chromosome (YAC) contig. In order to achieve the physical mapping of these YACs and of the corresponding genomic region, we subcloned one of the YACs involved. A computer-assisted analysis of the sequence of one subclone led to the isolation of a potential exon that proved to belong to a new expressed messenger named HCGIX. After Southern blot analysis, the corresponding cDNA clone was found to belong to a new multigene family whose members are dispersed throughout the HLA class I region and are closely associated with members of another recently described multigene family designated PERB11. The data reported here suggest that these two multigene families form a cluster that have been dispersed together throughout the telomeric part of the major histocompatibility complex and have been involved in the genesis of this human class I region. Received: 23 February 1996 / Revised: 23 April 1996  相似文献   

3.
The co mutation of Arabidopsis thaliana causes a late-flowering phenotype that is insensitive to day-ength. The mutation was mapped previously to the upper arm of chromosome 5, approximately 1.6 cM from the chalcone synthase gene (CHS). We were provided with five yeast artificial chromosome (YAC) libraries and used these to perform a chromosome walk from CHS to the CO gene. In this paper we report the isolation of 1700 kb of contiguous Arabidopsis DNA, which represents approximately 1%–2% of the genome, inserted in YACs. This required the detailed analysis of 67 YACs, from which 87 end probes were isolated and examined in hybridisation experiments. This analysis showed that approximately 40% of the YACs presented problems in chromosome walking experiments because they contained repetitive sequence at one of their termini, were chimaeric or because part of the plant DNA was deleted. DNA fragments isolated from YACs were used as restriction fragment length polymorphism (RFLP) markers to localize CO to a 300 kb region within the cloned DNA. We compare the physical distance between CHS and CO with the genetic distance and find that in this region 1 cM is equivalent to approximately 200 kb.  相似文献   

4.
Saturation mapping of a very small genomic region is indispensable for map-based cloning. We applied a method based on sub-cloning and the Southern-hybridization technique for generating RFLP markers directly from yeast artificial chromosomes (YACs). Two YACs overlapping each other and covering the locus of the rice blast resistance gene, Pi-b, were used to construct a plasmid sub-library. Rice-specific and single-copy clones suitable as probes for RFLP analysis were selected from this sub-library by hybridization to the blots of digested DNAs of rice, YACs, and yeast. As a result, 22 markers were produced within a small chromosomal region including Pi-b. This case study shows that overlapping YACs known to cover the gene of interest are very useful in fine-scale physical mapping leading to map-based cloning of the target gene. Received: 2 May 1996 / Accepted: 2 August 1996  相似文献   

5.
A yeast artificial chromosome (YAC), P1, and cosmid clone contig was constructed for the Werner syndrome (WRN) region of chromosome 8p12–p21 and used to clone a candidate gene forWRN.This region also possibly contains a familial breast cancer locus. The contig was initiated by isolating YACs for the glutathione reductase (GSR) gene and extended in either direction by walking techniques. Sequence-tagged site (STS) markers were generated from subclones of 2GSRYACs and used to identify P1 and cosmid clones. Additional STSs were generated from P1 and cosmid clones and from potential expressed sequences identified by cDNA selection and exon amplification methods. The final contig was assembled by typing 17 YACs, 20 P1 clones, and 109 cosmids for 54 STS markers. TheWRNregion could be spanned by 2 nonchimeric YACs covering approximately 1.4 Mb. A P1/cosmid contig was established covering the core 700–800 kb of theWRNregion. Fifteen new short tandem repeat polymorphisms and 2 biallelic polymorphic markers were identified and included as STSs in the contig. Analysis of these markers in Werner syndrome subjects demonstrates that the candidate WRN gene is in a region of linkage disequilibrium.  相似文献   

6.
7.
It has previously been shown that cDNA hybridization selection can identify and recover novel genes from large cloned genomic DNA such as cosmids or YACs. In an effort to identify candidate genes for hemochromatosis, this technique was applied to a 320-kb YAC containing the HLA-A gene. A short fragment cDNA library derived from human duodenum was selected with the YAC DNA. Ten novel gene fragments were isolated, characterized, and localized on the physical map of the YAC.  相似文献   

8.
The disease loci for X-linked Retinoschisis (RS), Keratosis follicularis spinulosa decalvans (KFSD), and Coffin-Lowry syndrome (CLS) have been localized to the same, small region in Xp22 on the human X Chromosome (Chr). To generate a high-resolution map of the available contig in this area, we have used the YAC fragmentation vectors pBP108/ADE2 and pBP109/ADE2 and generated fragmented YACs from a 2.5-Mb YAC (y939H7) spanning the mentioned disease gene candidate regions. Forty-seven fragmented YACs were generated and analyzed, ranging in size from 170 kb to over 2400 kb. The resulting YAC fragmentation panel was used to construct a detailed restriction map of the region and has been used to bin clones and markers. As a deletion panel, it will present a valuable resource for further mapping. Received: 31 December 1996 / Accepted: 22 February 1997  相似文献   

9.
The co mutation of Arabidopsis thaliana causes a late-flowering phenotype that is insensitive to day-ength. The mutation was mapped previously to the upper arm of chromosome 5, approximately 1.6 cM from the chalcone synthase gene (CHS). We were provided with five yeast artificial chromosome (YAC) libraries and used these to perform a chromosome walk from CHS to the CO gene. In this paper we report the isolation of 1700 kb of contiguous Arabidopsis DNA, which represents approximately 1%–2% of the genome, inserted in YACs. This required the detailed analysis of 67 YACs, from which 87 end probes were isolated and examined in hybridisation experiments. This analysis showed that approximately 40% of the YACs presented problems in chromosome walking experiments because they contained repetitive sequence at one of their termini, were chimaeric or because part of the plant DNA was deleted. DNA fragments isolated from YACs were used as restriction fragment length polymorphism (RFLP) markers to localize CO to a 300 kb region within the cloned DNA. We compare the physical distance between CHS and CO with the genetic distance and find that in this region 1 cM is equivalent to approximately 200 kb.  相似文献   

10.
During the final step of the malignant progression to glioblastoma multiforme (GBM), the most frequent and malignant of primary brain tumors, more than 90% of the cases exhibit loss of genetic material on chromosome 10. We previously identified a 4-cM deletion interval in the 10q24–qter region that is common to all the GBM we have examined. A contig of 20 YACs spanning the 5 Mb of chromosomal DNA in the region has been assembled. Overlaps between YACs have been verified by STS content, fingerprinting analysis, and/orAlu–AluPCR. The contig contains 17 known microsatellite markers, 15 new STSs derived from the insert ends of YACs, 9 ESTs, and 11 other STSs, for a total of 52 STSs (average marker density 1/100 kb). The physical map of this region will facilitate the search for a candidate tumor-suppressor gene(s) that is inactivated during the formation of GBM.  相似文献   

11.
The hemochromatosis gene (HFE) maps to 6p21.3 and is less than 1 cM from the HLA class I genes; however, the precise physical location of the gene has remained elusive and controversial. The unambiguous identification of a crossover event within hemochromatosis families is very difficult; it is particularly hampered by the variability of the phenotypic expression as well as by the sex- and age-related penetrance of the disease. For these practical considerations, traditional linkage analysis could prove of limited value in further refining the extrapolated physical position of HFE. We therefore embarked upon a linkage-disequilibrium analysis of HFE and normal chromosomes from the Brittany population. In the present report, 66 hemochromatosis families yielding 151 hemochromatosis chromosomes and 182 normal chromosomes were RFLP-typed with a battery of probes, including two newly derived polymorphic markers from the 6.7 and HLA-F loci located 150 and 250 kb telomeric to HLA-A, respectively. The results suggest a strong peak of existing linkage disequilibrium focused within the i82-to-6.7 interval (approximately 250 kb). The zone of linkage disequilibrium is flanked by the i97 locus, positioned 30 kb proximal to i82, and the HLA-F gene, found 250 kb distal to HLA-A, markers of which display no significant association with HFE. These data support the possibility that HFE resides within the 400-kb expanse of DNA between i97 and HLA-F. Alternatively, the very tight association of HLA-A3 and allele 1 of the 6.7 locus, both of which are comprised by the major ancestral or founder HFE haplotype in Brittany, supports the possibility that the disease gene may reside immediately telomeric to the 6.7 locus within the linkage-disequilibrium zone. Additionally, hemochromatosis haplotypes possessing HLA-A11 and the low-frequency HLA-F polymorphism (allele 2) are supportive of a separate founder chromosome containing a second, independently arising mutant allele. Overall, the establishment of a likely “hemochromatosis critical region” centromeric boundary and the identification of a linkage-disequilibrium zone both significantly contribute to a reduction in the amount of DNA required to be searched for novel coding sequences constituting the HFE defect.  相似文献   

12.
We have constructed an EcoRI-based YAC (yeast artificial chromosome) library from barley (Hordeum vulgare L. cv. Franka) using the vector pYAC4. The library consists of approximately 18 000 recombinant YACs with insert sizes ranging between 100 and 1000 kb (average of 160 kb) corresponding to 50% of the barley genome. Size fractionation after ligation resulted in an increased average insert size (av. 370 kb) but also in a substantial decrease in cloning efficiency. Less than 1% of the colonies showed homology to a plastome-specific probe; approximately 50% of the colonies displayed a signal with a dispersed, highly repetitive barley-specific probe. Using a primer combination deduced from the sequence of a member of the small Hor1 gene family coding for the C-hordein storage proteins, the library was screened by polymerase chain reaction and subsequently by the colony hybridization technique. A single YAC, designated Y66C11, with a 120 kb insert was isolated. This DNA fragment represents a coherent stretch from the terminal part of the Hor1 gene region as judged from the correspondence of the restriction patterns between Y66C11 DNA and barley DNA after hybridization with the Hor1-specific probe. Restriction with the isoschizomeric enzymes HpaII/MspI suggests a high degree of methylation of the Hor1 region in mesophyll cells but not in YAC-derived (yeast) DNA.  相似文献   

13.
The gene locus for cystinosis has been mapped between markers D17S1583 and D17S1584 on the short arm of chromosome 17. Using markers encompassing the cystinosis region, we assigned different yeast artificial chromosome (YAC) clones previously identified by sequence tagged site (STS) screening to 17p13.3. Three of the clones hybridized to the target 17p gene region; one of these was chimeric, hybridizing both to chromosomes 3p and 5q; two of the YACs did not contain sequences of 17p13.3. Our physical mapping has identified candidate YACs as a first step towards a positional cloning approach. Received: 28 February 1996 / Revised: 3 May 1996  相似文献   

14.
The Arabidopsis tornado1 (trn1) mutation causes severe dwarfism combined with twisted growth of all organs. We present a chromosome landing strategy, using amplified restriction fragment length polymorphism (AFLP) marker technology, for the isolation of the TRN1 gene. The recessive trn1 mutation was identified in a C24 transgenic line and is located 5?cM from a T-DNA insertion. We mapped the TRN1 locus to the bottom half of chromosome 5 relative to visible and restriction fragment length polymorphism (RFLP) markers. Recombinant classes within a 3-cM region around TRN1 were used to build a high-resolution map in this region, using the AFLP technique. Approximately 300 primer combinations have been used to test about 26?000 fragments for polymorphisms. Seventeen of these AFLP markers were identified in the 3-cM region around TRN1. These markers were mapped within this region using individual recombinants. Four of these AFLP markers co-segregate with TRN1 whereas one maps at one recombinant below TRN1. We isolated and cloned three of these AFLP markers. These markers identified two yeast artificial chromosome (YAC) clones, containing the RFLP marker above and the AFLP marker below TRN1, demonstrating that these YACs span the TRN1 locus and that chromosome landing has been achieved, using an AFLP-based strategy.  相似文献   

15.
A closed YAC contig spanning the mh locus was assembled by STS content mapping with seven microsatellite markers, eight genes or EST, and nine STS corresponding to YAC ends. The contig comprises 27 YACs, has an average depth of 4.3 YACs, and spans an estimated 1.2 Mb. A linkage map was constructed based on five of the microsatellite markers anchored to the contig and shown to span 7 cM, yielding a ratio of 160 kb/1 cM for the corresponding chromosome region. Comparative mapping data indicate that the constructed contig spans an evolutionary breakpoint connecting two chromosome segments that are syntenic but not adjacent in the human. Consolidation of human gene order by means of whole genome radiation hybrids and its comparison with the bovine order as inferred from the contig confirm conservation of gene order within segments. Received: 6 August 1998 / Accepted: 28 October 1998  相似文献   

16.
The transformation-associated recombination (TAR) cloning technique allows selective and accurate isolation of chromosomal regions and genes from complex genomes. The technique is based on in vivo recombination between genomic DNA and a linearized vector containing homologous sequences, or hooks, to the gene of interest. The recombination occurs during transformation of yeast spheroplasts that results in the generation of a yeast artificial chromosome (YAC) containing the gene of interest. To further enhance and refine the TAR cloning technology, we determined the minimal size of a specific hook required for gene isolation utilizing the Tg.AC mouse transgene as a targeted region. For this purpose a set of vectors containing a B1 repeat hook and a Tg.AC-specific hook of variable sizes (from 20 to 800 bp) was constructed and checked for efficiency of transgene isolation by a radial TAR cloning. When vectors with a specific hook that was ≥60 bp were utilized, ~2% of transformants contained circular YACs with the Tg.AC transgene sequences. Efficiency of cloning dramatically decreased when the TAR vector contained a hook of 40 bp or less. Thus, the minimal length of a unique sequence required for gene isolation by TAR is ~60 bp. No transgene-positive YAC clones were detected when an ARS element was incorporated into a vector, demonstrating that the absence of a yeast origin of replication in a vector is a prerequisite for efficient gene isolation by TAR cloning.  相似文献   

17.
Ferroportin disease is a rare type of autosomal dominantly inherited hemochromatosis caused with mutations in the ferroportin gene (SLC40A1). The patients characteristically have hyperferritinemia but normal transferin saturations. Herein, we present a 15-year-old female whose chief complaint was persistent nausea for the last one year. Extensive work-up including brain imaging revealed nothing to explain the etiology of nausea. The serum ferritin level of 1474 ng/mL was suggestive for hemochromatosis syndromes and the molecular testing revealed de-novo c.485_487delTTG (P.Val162del) ferroportin gene mutation. Mild hepatic iron loading, in addition to the cumbersome nausea were accepted as indications for chelation treatment in this particular patient and deferasirox was initiated (10 mg/kg/day) since family did not consent for phlebotomy. Deferasirox was stopped by the 9th month of initiation, since nausea subsided and hepatic iron content was normalized, in order to prevent over chelation. There are no well-established guidelines for the chelation of patients with hereditary hemochromatosis syndromes. However, lifelong monitorization for iron loading and re-initiation of chelation when necessary was planned in our patient.  相似文献   

18.
《Gene》1998,210(1):163-172
This report describes the construction of a new yeast artificial chromosome (YAC) vector designed for gene transfer into mammalian cells. For ease of use, the two arms of the vector were cloned separately. The vector harbours the Neo and Hyg genes for dominant selection in mammalian cells, a putative human origin of replication, a synthetic matrix attachment region and two loxP sites (one on each arm). The cloning ability of the vector was demonstrated by successful propagation of the cDNA of the cystic fibrosis gene, CFTR, as a YAC in Saccharomyces cerevisiae. A YAC containing the entire CFTR gene was also constructed by retrofitting the two arms of a pre-existing clone (37AB12) with the two arms of the novel vector. Both the cDNA and entire gene containing YACs were circularized in yeast by inducible expression of the Cre recombinase. Recombination occurred very specifically at the loxP sequences present on the two arms of the YAC. Applications of the vector to gene transfer are discussed.  相似文献   

19.
The barley Rar1 gene is an essential component of the race-specific, Mla-12-specified powdery mildew resistance reaction. As part of a map-based cloning strategy designed to isolate Rar1, five barley yeast artificial chromosomes (YACs) have been identified, ranging in size from 300 to 1100?kb. PCR-based YAC end-specific markers have been established and were employed to construct a local YAC contig. Four out of five YAC clones were found to be non-colinear with the source DNA. High-resolution genetic mapping of the YAC ends demonstrated that the set of five overlapping YAC clones encompasses the barley Rar1 gene.  相似文献   

20.
Several point mutations within exons 16 and 17 of the amyloid precursor protein (APP) gene have been reported that are associated with Alzheimer's disease in a small number of familial cases. To determine the size of the APP gene and the organization of the exons within human genomic DNA, we have characterized 11 Yeast Artificial Chromosome (YAC), recombinants containing human APP gene sequences. The smallest YAC insert was 125 kb, and the largest was 1.4 Mb. The YACs were screened by polymerase chain reaction amplification of APP exons to determine which of the 18 exons coding for APP770 were present. Four of the YACs (D110G1, D110G6, D110E9, and B142F9) contain all 18 exons and at least part of the promoter. Construction of an overlapping map of the gene with all of the YACs demonstrated that 3 of the 11 YACs were chimeric. The orientation and position of the coding sequence on the map was determined by probing digests of the YAC DNA with exon PCR products and the vector arms. The coding region of the APP gene spans approximately 400 kb of genomic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号