共查询到20条相似文献,搜索用时 9 毫秒
1.
Zhang XQ Qureshi A Song J Carl LL Tian Q Stahl RC Carey DJ Rothblum LI Cheung JY 《American journal of physiology. Heart and circulatory physiology》2003,284(1):H225-H233
Previous studies have shown that overexpression of phospholemman (PLM) affected contractile function and Ca(2+) homeostasis in adult rat myocytes. We tested the hypothesis that PLM modulated Na(+)/Ca(2+) exchanger (NCX1) activity. PLM was overexpressed in adult rat myocytes by adenovirus-mediated gene transfer. After 72 h, the half-time of relaxation from caffeine-induced contracture, an estimate of forward NCX1 activity, was prolonged 1.8-fold (P < 0.003) in myocytes overexpressing PLM compared with control myocytes overexpressing green fluorescent protein alone. Reverse NCX1 current (3 Na(+) out:1 Ca(2+) in) was significantly (P < 0.0001) lower in PLM myocytes, especially at more positive voltages. Immunofluorescence demonstrated colocalization of PLM and NCX1 to the plasma membrane and t-tubules. Resting membrane potential, action potential amplitude and duration, myocyte size, and NCX1 and calsequestrin protein levels were not affected by PLM overexpression. At 5 mM extracellular [Ca(2+)] ([Ca(2+)](o)), the depressed contraction amplitudes in PLM myocytes were increased towards normal by cooverexpression with NCX1. At 0.6 mM [Ca(2+)](o), the supranormal contraction amplitudes in PLM myocytes were reduced by cooverexpression with NCX1. We conclude that PLM modulated myocyte contractility partly by inhibiting Na(+)/Ca(2+) exchange. 相似文献
2.
Effects of sarcoplasmic reticulum Ca2+-ATPase overexpression in postinfarction rat myocytes. 总被引:1,自引:0,他引:1
Belinda A Ahlers Jianliang Song JuFang Wang Xue-Qian Zhang Lois L Carl George M Tadros Lawrence I Rothblum Joseph Y Cheung 《Journal of applied physiology》2005,98(6):2169-2176
Previous studies in adult myocytes isolated from rat hearts 3 wk after myocardial infarction (MI) demonstrated abnormal contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) homeostasis and decreased sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2) expression and activity, but sarcoplasmic reticulum Ca(2+) leak was unchanged. In the present study, we investigated whether SERCA2 overexpression in MI myocytes would restore contraction and [Ca(2+)](i) transients to normal. Compared with sham-operated hearts, 3-wk MI hearts exhibited significantly higher left ventricular end-diastolic and end-systolic volumes but lower fractional shortening and ejection fraction, as measured by M-mode echocardiography. Seventy-two hours after adenovirus-mediated gene transfer, SERCA2 overexpression in 3-wk MI myocytes did not affect Na(+)-Ca(2+) exchanger expression but restored the depressed SERCA2 levels toward those measured in sham myocytes. In addition, the reduced sarcoplasmic reticulum Ca(2+) uptake in MI myocytes was improved to normal levels by SERCA2 overexpression. At extracellular Ca(2+) concentration of 5 mM, the subnormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were restored to normal by SERCA2 overexpression. However, at 0.6 mM extracellular Ca(2+) concentration, the supernormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were exacerbated by SERCA2 overexpression. We conclude that SERCA2 overexpression was only partially effective in ameliorating contraction and [Ca(2+)](i) transient abnormalities in our rat model of ischemic cardiomyopathy. We suggest that other Ca(2+) transport pathways, e.g., Na(+)-Ca(2+) exchanger, may also play an important role in contractile and [Ca(2+)](i) homeostatic abnormalities in MI myocytes. 相似文献
3.
Interleukin-1 beta inhibits Na+-K+ ATPase activity and protein expression in cardiac myocytes 总被引:3,自引:0,他引:3
Recent studies have shown that heart diseases are always accompanied with high levels of IL-1beta and a decrease in Na+-K+ ATPase concentrations. This work studies the involvement of the cytokine in the observed changes in the pump. Rats were injected intraperitoneally with 400 mg of IL-1beta and 4 h later, the heart was isolated and a crude homogenate of the right and left ventricles was prepared and tested for Na+-K+ ATPase activity and protein expression. IL-1beta inhibited by around 70% the activity of the ATPase in the left and right ventricles. This inhibition of the pump was ascribed to a decrease in its protein expression as demonstrated by western blot analysis. A dose and time response study conducted on isolated cardiac myocytes confirmed the inhibitory role of the cytokine on the ATPase and showed that IL-1beta exerts its maximal down-regulatory effect at 2 h and at a dose of 20 ng/ml. The cytokine caused also an up-regulation of the NaKCl2 cotransporter. Both MEK and p38MAPK were shown to be involved in the signaling pathway activated by the cytokine. It can be concluded that the decrease in the Na+-K+ ATPase concentration observed in heart diseases is a consequence of the accompanying high levels of IL-1beta, and may be responsible for the different symptoms that accompany cardiac ischemia. 相似文献
4.
Na+ influx and Na+-K+ pump activation during short-term exposure of cardiac myocytes to aldosterone 总被引:1,自引:0,他引:1
Mihailidou Anastasia S.; Buhagiar Kerrie A.; Rasmussen Helge H. 《American journal of physiology. Cell physiology》1998,274(1):C175
To examine the effect of aldosterone on sarcolemmalNa+ transport, we measuredouabain-sensitive electrogenicNa+-K+pump current(Ip) involtage-clamped ventricular myocytes and intracellularNa+ activity(aiNa) in right ventricularpapillary muscles. Aldosterone (10 nM) induced an increase in bothIp and the rateof rise of aiNa duringNa+-K+pump blockade with the fast-acting cardiac steroid dihydroouabain. Thealdosterone-induced increase inIp and rate ofrise of aiNa was eliminated bybumetanide, suggesting that aldosterone activates Na+ influx through theNa+-K+-2Clcotransporter. To obtain independent support for this, theNa+,K+, andCl concentrations in thesuperfusate and solution of pipettes used to voltage clamp myocyteswere set at levels designed to abolish the inward electrochemicaldriving force for theNa+-K+-2Clcotransporter. This eliminated the aldosterone-induced increase inIp. We concludethat in vitro exposure of cardiac myocytes to aldosterone activates theNa+-K+-2Clcotransporter to enhance Na+influx and stimulate theNa+-K+pump. 相似文献
5.
Bewick N. L.; Fernandes C.; Pitt A. D.; Rasmussen H. H.; Whalley D. W. 《American journal of physiology. Cell physiology》1999,276(5):C1091
We have previously demonstrated that the sarcolemmalNa+-K+pump current(Ip) in cardiacmyocytes is stimulated by cell swelling induced by exposure tohyposmolar solutions. However, the underlying mechanism has not beenexamined. Because cell swelling activates stretch-sensitive ionchannels and intracellular messenger pathways, we examined their rolein mediating Ipstimulation during exposure of rabbit ventricular myocytes to ahyposmolar solution.Ip was measuredby the whole cell patch-clamp technique. Swelling-induced pumpstimulation altered the voltage dependence ofIp. Pumpstimulation persisted in the absence of extracellularNa+ and under conditions designedto minimize changes in intracellular Ca2+, excluding an indirectinfluence on Ipmediated via fluxes through stretch-activated channels. Pumpstimulation was protein kinase C independent. The tyrosine kinaseinhibitor tyrphostin A25, the phosphatidylinositol 3-kinase inhibitorLY-294002, and the protein phosphatase-1 and -2A inhibitor okadaic acidabolished Ipstimulation. Our findings suggest that swelling-induced pumpstimulation involves the activation of tyrosine kinase,phosphatidylinositol 3-kinase, and a serine/threonine proteinphosphatase. Activation of this messenger cascade maycause activation by the dephosphorylation of pump units. 相似文献
6.
Arginine vasopressin stimulates Na+-K+-ATPase activity located in the rat thick ascending limb of s'Henle loop. Mammalian hypothalamus appears to produce a factor capable of inhibiting Na+-K+-ATPase activity in a variety of tissues. The effect of a purified rat hypothalamic extract with and without AVP on rat renal Na+-K+-ATPase activity was evaluated by a cytochemical technique. The hypothalamic extract alone failed to affect basal Na+-K+-ATPase activity throughout renal segments after 10 min exposure. Na+-K+-ATPase activity stimulated by AVP (1–10 fmol l?1) for 10 min was inhibited by rat hypothalamic extract over the concentration range 10?7–10?3 U ml?1 in a dose-dependent manner. Complete inhibition of AVP-stimulated Na+-K+-ATPase activity occurred at a hypothalamic extract concentration of 10?3 U ml?1. Only Na+-K+-ATPase activity located in the renal medullary thick ascending limb was influenced by the rat hypothalamic extract. 相似文献
7.
8.
White CN Hamilton EJ Garcia A Wang D Chia KK Figtree GA Rasmussen HH 《American journal of physiology. Cell physiology》2008,294(2):C572-C578
Pharmacological delivery of nitric oxide (NO) stimulates the cardiac Na(+)-K(+) pump. However, effects of NO synthesized by NO synthase (NOS) often differ from the effects of NO delivered pharmacologically. In addition, NOS can become "uncoupled" and preferentially synthesize O(2)(.-), which often has opposing effects to NO. We tested the hypothesis that NOS-synthesized NO stimulates Na(+)-K(+) pump activity, and uncoupling of NOS inhibits it. To image NO, we loaded isolated rabbit cardiac myocytes with 4,5-diaminofluorescein-2 diacetate (DAF-2 DA) and measured fluorescence with confocal microscopy. L-arginine (L-arg; 500 micromol/l) increased DAF-2 DA fluorescence by 51% compared with control (n = 8; P < 0.05). We used the whole cell patch-clamp technique to measure electrogenic Na(+)-K(+) pump current (I(p)). Mean I(p) of 0.35 +/- 0.03 pA/pF (n = 44) was increased to 0.48 +/- 0.03 pA/pF (n = 7, P < 0.05) by 10 micromol/l L-Arg in pipette solutions. This increase was abolished by NOS inhibition with radicicol or by NO-activated guanylyl cyclase inhibition with 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one. We next examined the effect of uncoupling NOS using paraquat. Paraquat (1 mmol/l) induced a 51% increase in the fluorescence intensity of O(2)(.-)-sensitive dye dihydroethidium compared with control (n = 9; P < 0.05). To examine the functional effects of uncoupling, we measured I(p) with 100 micromol/l paraquat included in patch pipette solutions. This decreased I(p) to 0.28 +/- 0.03 pA/pF (n = 12; P < 0.001). The paraquat-induced pump inhibition was abolished by superoxide dismutase (in pipette solutions). We conclude that NOS-mediated NO synthesis stimulates the Na(+)-K(+) pump, whereas uncoupling of NOS causes O(2)(.-)-mediated pump inhibition. 相似文献
9.
10.
Rescue of contractile abnormalities by Na+/Ca2+ exchanger overexpression in postinfarction rat myocytes. 总被引:1,自引:0,他引:1
Xue-Qian Zhang Jianliang Song Anwer Qureshi Lawrence I Rothblum Lois L Carl Qiang Tian Joseph Y Cheung 《Journal of applied physiology》2002,93(6):1925-1931
Previous studies on myocytes isolated from rat hearts 3 wk after myocardial infarction (MI) demonstrated increased cell length, reduced Na(+)/Ca(2+) exchange (NCX1) activity, altered contractility, and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients. In the present study, we investigated whether NCX1 overexpression in MI myocytes would restore contraction and [Ca(2+)](i) transients to normal. When myocytes were placed in culture under continued electrical-field stimulation conditions, differences in contraction amplitudes and cell lengths between sham and MI myocytes were preserved for at least 48 h. Infection of both sham and MI myocytes by adenovirus expressing green fluorescent protein resulted in >95% infection, as evidenced by green fluorescent protein fluorescence, but contraction amplitudes at 6-, 24-, and 48-h postinfection were not affected. NCX1 overexpression in MI myocytes resulted in lower diastolic [Ca(2+)](i) levels at all extracellular Ca(2+) concentrations ([Ca(2+)](o)) examined, suggesting enhanced forward NCX1 activity. At 5 mM [Ca(2+)](o), subnormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were restored toward normal levels by overexpressing NCX1. At 0.6 mM [Ca(2+)](o), supranormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were lowered by NCX1 overexpression. We conclude that overexpression of NCX1 in MI myocytes was effective in improving contractile dysfunction, most likely because of enhancement of both Ca(2+) efflux and influx during a cardiac cycle. We suggest that decreased NCX1 activity may play an important role in contractile abnormalities in postinfarction myocytes. 相似文献
11.
12.
Acute regulation of the Na(+)-K(+)-ATPase activity in rat soleus muscle was investigated in response to 15 and 90 min of electrically induced contractile activity (500-ms trains at 30 Hz every 1.5 s). Kinetic measurements of Na(+)-K(+)-ATPase activity, assessed by the 3-O-methylfluorescein K(+)-stimulated phosphatase assay (3-O-MFP), were performed on crude homogenates (Hom) and on tissue separated into two membrane fractions, the sarcolemmal/particulate (SLP) and endosomal (En), in both stimulated (Stim) and contralateral control (Con) muscles. Maximal 3-O-MFP activity (V(max), nmol.mg protein(-1).h(-1)) was elevated (P < 0.05) in Stim by 40% and by 53% in Hom and by 37 and 40% in SLP at 15 and 90 min, respectively. The 38% increase (P < 0.05) in the alpha(2)-isoform subunit distribution in SLP at 15 min, as assessed by quantitative immunoblotting, persisted at 90 min, whereas for En a 42% decrease (P < 0.05) was observed only at 15 min. For the alpha(1)-subunit at 15 min, a 27% decrease (P < 0.05) was observed in En, whereas the 13% increase observed in SLP was not significant (P = 0.08). At 90 min, alpha(1) was increased (P < 0.05) by 14% in SLP and by 29% in En. No changes were observed in beta(1)-subunit distribution in En and SLP regardless of time of stimulation. Immunoprecipitation with antiphosphotyrosine antibody and quantitative immunoblotting with alpha(1)- and alpha(2)-antibodies indicated increases (P < 0.05) in tyrosine phosphorylation of 51% in alpha(2) at 15 min only. These results suggest that the increases in V(max) during contractile activity are mediated both by increased phosphorylation and by translocation of the enzyme to the plasma membrane. 相似文献
13.
14.
The purpose of this study was to investigate the hypothesis that muscle Na+-K+-ATPase activity is directly related to Na+-K+-ATPase content and the content of the alpha2-catalytic isoform in muscles of different fiber-type composition. To investigate this hypothesis, tissue was sampled from soleus (Sol), red gastrocnemius (RG), white gastrocnemius (WG), and extensor digitorum longus (EDL) muscles at rest from 38 male Wistar rats weighing 413 +/- 6.0 g (mean +/- SE). Na+-K+-ATPase activity was determined in homogenates (Hom) and isolated crude membranes (CM) by the regenerating ouabain-inhibitable hydrolytic activity assay (ATPase) and the 3-O-methylfluorescein K+-stimulated phosphatase (3-O-MFPase) assay in vitro. In addition, Na+-K+-ATPase content (Bmax) and the distribution of alpha1-, alpha2-, beta1-, and beta2-isoforms were determined by [3H]ouabain binding and Western blot, respectively. For the ATPase assay, differences (P < 0.05) in enzyme activity between muscles were observed in Hom (EDL > WG) and in CM (Sol > EDL = WG). For the 3-O-MFPase assay, differences (P < 0.05) were also found for Hom (Sol > RG = EDL > WG) and CM (Sol = WG > RG). For Bmax, differences in the order of RG = EDL > Sol = WG (P < 0.05) were observed. Isoform distribution was similar between Hom and CM and indicated in CM, a greater density (P < 0.05) of alpha1 in Sol than WG and EDL (P < 0.05), but more equal distribution of alpha2 between muscles. The beta1 was greater (P < 0.05) in Sol and RG, and the beta2 was greater in EDL and WG (P < 0.05). Over all muscles, the correlation (r) between Hom 3-O-MFPase and Bmax was 0.45 (P < 0.05) and between Hom alpha2 and Bmax, 0.59 (P < 0.05). The alpha1 distribution correlated to Hom 3-O-MFPase (r = 0.79, P < 0.05) CM ATPase (r = 0.69, P < 0.005) and CM 3-O-MFPase activity (r = 0.32, P < 0.05). The alpha2 distribution was not correlated with any of the Na+-K+-ATPase activity measurements. The results indicate generally poor relationships between activity and total pump content and alpha2 isoform content of the Na+-K+-ATPase. Several factors, including the type of preparation and the type of assay, appear important in this regard. 相似文献
15.
Belusa Roger; Aizman Oleg; Andersson Ronnie M.; Aperia Anita 《American journal of physiology. Cell physiology》2002,282(2):C302
Most vital cellular functions aredependent on a fine-tuned regulation of intracellular ion homeostasis.Here we have demonstrated, using COS cells that were untransfected ortransfected with wild-type rat ouabain-resistantNa+-K+-ATPase, that partial inhibition ofNa+-K+-ATPase has a dramatic influence oncell attachment to fibronectin. Ouabain dose-dependently decreasedattachment in untransfected cells and in cells expressing wild-typeNa+-K+-ATPase, but not in cells expressingouabain-insensitive Na+-K+-ATPase, whereasinhibition of Na+-K+-ATPase by loweringextracellular K+ concentration decreased attachment in allthree cell types. Thirty percent inhibition ofNa+-K+-ATPase significantly attenuatedattachment. Na+-K+-ATPase inhibition caused asustained increase in the intracellular Ca2+ concentrationthat obscured Ca2+ transients observed in untreated cellsduring attachment. Inhibitors of Ca2+ transporterssignificantly decreased attachment, but inhibition ofNa+/H+ exchanger did not. Ouabain reduced focaladhesion kinase autophosphorylation but had no effect on cell surfaceintegrin expression. These results suggest that the level ofNa+-K+-ATPase activity strongly influences cellattachment, possibly by an effect on intracellular Ca2+. 相似文献
16.
Dependence of Na+-K+ pump current-voltage relationship on intracellular Na+, K+, and Cs+ in rabbit cardiac myocytes 总被引:2,自引:0,他引:2
Hansen PS Buhagiar KA Kong BY Clarke RJ Gray DF Rasmussen HH 《American journal of physiology. Cell physiology》2002,283(5):C1511-C1521
To examine effects of cytosolicNa+, K+, and Cs+ on the voltagedependence of the Na+-K+ pump, we measuredNa+-K+ pump current (Ip)of ventricular myocytes voltage-clamped at potentials(Vm) from 100 to +60 mV. Superfusates weredesigned to eliminate voltage dependence at extracellular pump sites.The cytosolic compartment of myocytes was perfused with patch pipette solutions with a Na+ concentration ([Na]pip)of 80 mM and a K+ concentration from 0 to 80 mM or withsolutions containing Na+ in concentrations from 0.1 to 100 mM and K+ in a concentration of either 0 or 80 mM. When[Na]pip was 80 mM, K+ in pipette solutionshad a voltage-dependent inhibitory effect on Ipand induced a negative slope of theIp-Vm relationship. Cs+ in pipette solutions had an effect onIp qualitatively similar to that ofK+. Increases in Ip with increasesin [Na]pip were voltage dependent. The dielectriccoefficient derived from[Na]pip-Ip relationships at thedifferent test potentials was 0.15 when pipette solutions included 80 mM K+ and 0.06 when pipette solutions were K+ free. 相似文献
17.
Tian J Gong X Xie Z 《American journal of physiology. Heart and circulatory physiology》2001,281(5):H1899-H1907
We showed before that Na+-K+-ATPase is also a signal transducer in neonatal rat cardiac myocytes. Binding of ouabain to the enzyme activates multiple signal pathways that regulate cell growth. The aims of this work were to extend such studies to adult cardiac myocytes and to determine whether the signal-transducing function of Na+/K+-ATPase regulates the well-known effects of ouabain on intracellular Ca2+ concentration ([Ca2+]i). In adult myocytes, ouabain activated protein tyrosine phosphorylation and p42/44 mitogen-activated protein kinases (MAPKs), increased production of reactive oxygen species (ROS), and raised both systolic and diastolic [Ca2+]i. Pretreatment of myocytes with several Src kinase inhibitors, or overexpression of a dominant negative Ras, antagonized ouabain-induced activation of MAPKs and increases in [Ca2+]i. Treatment with PD-98059 (a MAPK kinase inhibitor) or overexpression of a dominant negative MAPK kinase 1 also ablated the effect of ouabain on MAPKs and [Ca2+]i. N-acetyl-cysteine, which blocks the effect of ouabain on ROS, did not prevent the ouabain-induced rise in [Ca2+]i. Clearly, the activation of the Ras/MAPK cascade, but not ROS generation, is necessary for ouabain-induced increases in [Ca2+]i in rat cardiac myocytes. 相似文献
18.
Hansen PS Clarke RJ Buhagiar KA Hamilton E Garcia A White C Rasmussen HH 《American journal of physiology. Cell physiology》2007,292(3):C1070-C1077
The effect of diabetes on sarcolemmal Na+-K+ pump function is important for our understanding of heart disease associated with diabetes and design of its treatment. We induced diabetes characterized by hyperglycemia but no other major metabolic disturbances in rabbits. Ventricular myocytes isolated from diabetic rabbits and controls were voltage clamped and internally perfused with the whole cell patch-clamp technique. Electrogenic Na+-K+ pump current (Ip, arising from the 3:2 Na+-to-K+ exchange ratio) was identified as the shift in holding current induced by Na+-K+ pump blockade with 100 µmol/l ouabain in most experiments. There was no effect of diabetes on Ip recorded when myocytes were perfused with pipette solutions containing 80 mmol/l Na+ to nearly saturate intracellular Na+-K+ pump sites. However, diabetes was associated with a significant decrease in Ip measured when pipette solutions contained 10 mmol/l Na+. The decrease was independent of membrane voltage but dependent on the intracellular concentration of K+. There was no effect of diabetes on the sensitivity of Ip to extracellular K+. Pump inhibition was abolished by restoration of euglycemia or by in vivo angiotensin II receptor blockade with losartan. We conclude that diabetes induces sarcolemmal Na+-K+ pump inhibition that can be reversed with pharmacological intervention. sodium transport; insulin; angiotensin II; cardiomyopathy; hyperglycemia 相似文献
19.
J L Cangiano C Rodriguez-Sargent S Opava-Stitzer M Martinez-Maldonado 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1984,177(2):240-246
The interrelationships among plasma renin activity (PRA, ng AI/ml plasma/hr), aldosterone concentration (ng%), and renal Na+-K+-ATPase activity (mumole PO4/mg protein/hr) were studied in 9 weanling normotensive spontaneously hypertensive rats (SHR), 9 adult hypertensive SHR, and 9 weanling and 9 adult normotensive Wistar-Kyoto rats (WKY). All groups were placed on a normal (0.4% sodium) diet. PRA and plasma aldosterone, measured in samples drawn from the ether-anesthetized rat, were higher in weanling SHR (15.2 +/- 2.0, 37 +/- 4.2) than in WKY. PRA measured in samples collected from a separate group of unanesthetized weanling SHR was also greater than in age-matched WKY. In adult SHR, PRA (6.1 +/- 0.9) and plasma aldosterone (20.0 +/- 2.7) were decreased. During the weanling period Na+-K+-ATPase activity in SHR was not only greater than in age-matched WKY but was also increased compared to adult normotensive and hypertensive rats (137 +/- 9 weanling SHR, 89 +/- 7 weanling WKY, 73 +/- 11 adult SHR, 84 +/- 17 adult WKY). Thus, during the weanling period the renin-angiotensin-aldosterone (R-A-A) system and renal Na+-K+-ATPase activity are activated in SHR. The elevation of Na+-K+-ATPase activity may be due to increased aldosterone levels. It was noted, however, that plasma aldosterone was similar in adult WKY and weanling SHR, while Na+-K+-ATPase activity was higher in SHR. These findings involving R-A-A and renal Na+-K+-ATPase activity prior to the elevation of blood pressure suggest that the kidneys may play a role in the initiation of hypertension in SHR. 相似文献
20.
We have measured the voltage dependence of the Na/K pump in isolated adult rat cardiac myocytes using the whole-cell patch-clamp technique. In the presence of 1–2 mM Ba and 0.1 mm Cd and nominally Ca-free, Na/K pump current (I
p) was measured as the change in current due to 1 mM ouabain. Voltage dependence of I
pwas measured between –140 and +40 or +60 mV using square voltage-pulse and voltage-ramp protocols, respectively. With 150 mM extracellular Na (Na
o
) and 5.4 mM extracellular K (K
o
), we found that the Na/K pump shows a strong positive voltage dependence between –140 and 0 mV and is voltage independent at positive potentials. Removing Na
o
reduced the voltage dependence at negative potentials with no effect at positive potentials. When K
o
was reduced, a negative slope appeared in the current-voltage (I-V) curve at positive potentials. We have investigated whether Na
i
(intracellular Na) might also affect the voltage dependence of I
pby varying Na in the patch pipette (Napip) between 20 and 85 mM. We found, as expected, that I
pincreased markedly as Napip was raised, saturating at about 70 mM Napip under these conditions. In contast, while I
psaturated near +20 mV and declined to about 40% of maximum at –120 mV, there was no effect of Napip under these conditions. In contrast, while I
psaturated near +20 mV and declined to about 40% of maximum at –120 mV, there was no effect of Napip on the voltage dependence of I
p. This suggests that neither Na
i
binding to the Na/K pump nor the conformational changes dependent on Na
i
binding are voltage dependent. These results are consistent with extracellular ion binding within the field of the membrane but do not rule out the possibility that other steps, such as Na translocation, are also voltage dependent.We wish to thank Ms. Melinda Price, Ms. Meei Liu and Mr. Randall Anderson for their technical assistance. This work was supported in part by National Institutes of Health grant HL44660. 相似文献