首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of the Ca++ ionophore A23187 (10 microM) to the inside solution of the frog skin induced a transient increase in the active Na+ transport in frog skin (Rana esculenta) which decayed to the control values 60 minutes after the addition. At the same time the skin resistance failed significantly; antidiuretic hormone addition resulted in no-more increase of the Na+ active transport; the skin resistance remained unchanged. To further investigate the role of intracellular calcium on the skin transepithelial permeability, the effect of A23187 ionophore on thiourea permeability has been tested. Increase in intracellular Ca++ concentration brought about by calcium ionophores have been shown to modify both basal and ADH-stimulated thiourea transport.  相似文献   

2.
The activities of Ca2+, Mg2+-ATPase and Na+, K+-ATPase and the permeability of reconstituted human erythrocytes for Na and K ions were measured, using Ca2+-EGTA, Ca2+ATP and Ca2+-sodium citrate buffers. It was found that the increase in the Ca2+/chelate ratio caused stimulation of Ca2+, Mg2+- and Na+, K+-Atpases and an increase in the rate constants of ouabain--dependent 42K+ influx and 22Na+ efflux from the erythrocytes. The use of the Ca2+-sodium citrate system as a calcium buffer did not change the parameters of the functional state of erythrocyte membranes. The data obtained are discussed in terms of a possible role of calcium ions, which are bound to the inner surface of the erythrocyte membrane, in the regulation of the systems of active and passive transport of cations.  相似文献   

3.
The effect of physiological and pharmacological concentrations of aldosterone on Na+ efflux catalyzed by the human erythrocyte Na+,K+-ATPase in vitro were studied. Aldosterone had no significant effect on ouabain-sensitive Na+ efflux from fresh erythrocytes. In addition, aldosterone did not alter Na+ transport activity of stimulated Na+,K+-ATPase of Na+ loaded erythrocytes. Finally, Na+ efflux from Na+ loaded erythrocytes was not changed by preincubation of the cells with aldosterone. It is concluded that aldosterone in vitro does not modify pump activity of the human erythrocyte Na+, K+-ATPase.  相似文献   

4.
When fresh human erythrocytes or their ghosts are incubated with Ca + IAA (iodoacetic acid) + adenosine, K permeability increases; K permeability also increases when energy-depleted cells or their ghosts are incubated with Ca alone. Na transport decreases or remains unaltered in both situations. The Ca-induced increase in K permeability in the depleted cell system is qualitatively similar to that seen in the fresh cell system and furnishes a means for studying the metabolic dependence of calcium's action. Studies with the depleted system suggest that the normal refractiveness of the cell to calcium is provided by a metabolically dependent substrate. Removal of this substrate allows Ca to enter the cell and exert its effect. By using 47Ca, a maximum value was obtained (3–7 x 10-6 moles/liter of red blood cells) for the quantity of calcium that is taken up by the cell and responsible for the change in K permeability. Measurements of the unidirectional fluxes of K, obtained during the time Ca increases K permeability, appear to satisfy the flux ratio equation for passive diffusion through a membrane.  相似文献   

5.
Ion metabolism in malaria-infected erythrocytes   总被引:2,自引:0,他引:2  
K Tanabe 《Blood cells》1990,16(2-3):437-449
Malaria parasites of the genus Plasmodium spend much of their asexual life cycle inside the erythrocytes of their vertebrate hosts. Parasites presumably have to exploit metabolic and transport mechanisms to adapt themselves to the host erythrocyte's physicochemical environment. This review surveys the metabolism and transport of Ca2+, alkali cations, and H+ in malaria-infected erythrocytes. The Ca2+ content of Plasmodium-infected erythrocytes increases as the parasite matures. An increase in the influx of extracellular Ca2+ into infected erythrocytes is evident at later stages of parasite development. In infected erythrocytes, Ca2+ is almost exclusively localized in the parasite compartment and changes but little in the cytosol of the host cell. The importance of Ca2+ in supporting the growth of intraerythrocytic parasites and the invasion of erythrocytes by the merozoite has been assessed by depletion of extracellular Ca2+ with chelators, or by disturbance of the metabolism and transport of Ca2+ with a variety of Ca2+ modulators. Membranes of malaria-infected erythrocytes change their permeability to alkali cations. Hence, levels of K+ decrease and levels of Na+ increase in the cytosol of infected erythrocytes. Intraerythrocytic parasites maintain a high K+, low Na+ state, suggesting a mechanism for transporting K+ inward and Na+ outward against concentration gradients of the alkali cations across the parasite plasma membrane and/or the parasitophorous vacuole membrane (PVM). Concomitantly, P. falciparum can grow in Na(+)-enriched human erythrocytes. Experimental evidence suggests that Plasmodium possesses in its plasma membrane a proton pump which is very sensitive to orthovanadate, carbonylcyanide m-chlorophenylhydrazone, a protonophore, and dicyclohexylcarbodiimide, an inhibitor of H(+)-ATPase, but is only slightly sensitive to inhibitors of bacterial and mitochondrial respiration, such as antimycin A, CN-, or N3-, and ouabain, a Na+, K(+)-ATPase inhibitor. By operating this proton pump, parasites extrude H+ and thus generate an electrochemical gradient of protons (an internal negative membrane potential and a concentration gradient of protons) across the parasite plasma membrane. The electrochemical gradient apparently drives inward movement of Ca2+ and, possibly, glucose from the cytosol of infected erythrocytes. Little is known about the transport properties of the PVM. Recent sequence studies suggest that Plasmodium contains a cation-transporting ATPase which exhibits a high homology to the Ca2(+)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The form and surface architectonic of erythrocytes studied in 18 teenagers and men with hypertensive disease of I stage (HD) and in 7 men with symptomatic (renal) hypertension (SH). Simultaneously permeability of erythrocyte membranes for Na+ and K+ was studies. The change in the form and surface architectonics was found in the erythrocytes of the patients with hypertensive disease, I stage. The same was true for the patients with renal hypertension but the difference was not so prominent. Rapid shift of correlation of erythrocyte morphological varieties has been revealed during the study of Na+ and K+ ions' transport rate after the treatment by p-chloromercuribenzoate acid. Increase of irreversible transformation of erythrocytes was discovered in patients with HD. Besides in some cases there was decrease in the size of echinocytes. The transformation of erythrocytes into echinocytes is more prominent in healthy subjects and in patients with SH. Our data suggest that the change in erythrocyte form is related to the change of erythrocyte membrane permeability to Na+ and K+ ions and the alteration of membrane structure is the basis for these disturbances.  相似文献   

7.
Ca2+ efflux from dog red blood cells loaded with Ca2+ using the A23187 ionophore could be separated into two main components: (1) Mg- and ATP-dependent (active transport) and (2) dependent on external Na (K1/2 around 15 mM); at 80 microM internal free Ca the relative magnitudes of these fluxes were 70% and 30% respectively. The Na-dependent Ca2+ efflux had the following additional properties: (i) it was partially inhibited by ATP depletion or preincubation with vanadate, but it was not affected by Mg2+ depletion; (ii) it failed to be stimulated by external monovalent cations other than Na: (iii) it was stimulated by reduction in the internal Na+ concentration. Both active and Na-dependent Ca2+ efflux remained unchanged in hypotonic solutions or in solutions with alkaline pH (8.5). In cells containing ATP and Mg2+, external Ca2+ inhibited Ca2+ efflux (K1/2 around 1 mM); on the other hand, in Mg-free dog red cells external Ca2+ stimulated Ca2+ efflux (K1/2 about 30 microM). In Mg-depleted red cells incubated in the absence of external Na2+, Ca2+ influx as a function of external Ca2+ followed a monotonically saturable function (K1/2 around 20 microM): addition of Na resulted in (i) inhibition of Ca2+ influx and (ii) a sigmoid relationship between flux and external Ca2+. Intracellular Ca2+ stimulated the external Na-dependent Ca2+ efflux along a sigmoid curve (K1/2 around 30 microM); on the other hand the Ca pump had a biphasic response to internal Ca2+: stimulation at low internal Ca2+ (K1/2 between 1 and 10 microM), followed by a decline at internal Ca2+ concentrations higher than 50 microM.  相似文献   

8.
In this study we evaluated the influence of cyproheptadine treatment on serum PTH values, as well as serum Ca, Mg and P levels in patients with primary hyperparathyroidism. For this purpose, cyproheptadine was given in a dose of 4 mg orally every 4 hours during 10 consecutive days to six patients with primary hyperparathyroidism. Control fasting blood samples for PTH, Ca, Mg and P were obtained every other day for a week. Afterwards cyproheptadine treatment was applied as mentioned above. Then blood samples were taken on the 4th, 6th, and 10th day of treatment to determine serum PTH, Ca, Mg and P. Before treatment the mean PTH (+/- SE) values were 22.95 +/- 1.4 mlU/ml and during cyproheptadine treatment were 23.06 +/- 0.9, 22.95 +/- 0.8, 22.32 +/- 0.8 mlU/ml, respectively. There were no significant changes in serum PTH levels before and during treatment (P greater than 0.05). Also serum Ca, Mg and P levels remained unchanged. Our data suggest that cyproheptadine treatment does not affect calcium homoeostasis and serum PTH levels in primary hyperparathyroidism.  相似文献   

9.
An in vitro single radiation of helium-neon laser (power flux density being 2 mW/cm2 exposure--1 and 3 min) does not change the concentration of Na+ and K+, activity of Na+, K+-dependent ATPase in erythrocytes and does not affect the intensity of active Na transport through their membrane in the donor blood. The 5 min laser action decreases the level of K+ and increases that of Na+ in the erythrocytes, activates Na+, K+-ATPases and intensifies the active Na+ transport.  相似文献   

10.
Ca2+-activated Na+ fluxes in human red cells. Amiloride sensitivity   总被引:4,自引:0,他引:4  
The effect of Ca2+ on the ouabain- and bumetanide-resistant Na+ fluxes in intact red cells was studied at relatively constant internal Ca2+, membrane potential, and cell volume. The red cell calcium concentration was modified using the ionophore A23187. In fresh red cells, the Na+ influx and efflux (1.2 +/- 0.13 and 0.26 +/- 0.07 mmol/liter cells x h, respectively) were not affected by amiloride (1 mM). When external Ca2+ was raised from 0 to 150 microM, in the presence of A23187, both the Na+ influx and efflux were stimulated (about 3.5-fold). The Ca2+-activated Na+ efflux and influx had an apparent Km for activation by Ca2+o of about 25 microM. The Ca2+-dependent Na+ transport was inhibited 30-60% by amiloride (ID50 = 17.3 +/- 8 microM). Amiloride, however, had no effect on the Ca2+-dependent K+ influx. The amiloride-sensitive (AS) transport pathway was a linear function of the Na+o concentration in the range from 0 to 75 mM. The Ca2+i activation seems to depend on the metabolic integrity of red cells. 1) It does not take place in ATP-depleted red cells; 2) ATP-repletion of ATP-depleted red cells fully restored AS Na influx; and 3) ATP-enrichment (ATP-red cells) enhanced the AS Na influx by about 100%. The Ca2+-activated AS Na+ influx was not affected by either DIDS or trifluoperazine. The present results indicate that in human erythrocytes an increase in internal Ca2+ activates on otherwise silent AS Na+-transport system, which is dependent on the metabolic integrity of the red cells.  相似文献   

11.
Depolarizing response of rat parathyroid cells to divalent cations   总被引:2,自引:0,他引:2       下载免费PDF全文
Membrane potentials were recorded from rat parathyroid glands continuously perfused in vitro. At 1.5 mM external Ca++, the resting potential averages -73 +/- 5 mV (mean +/- SD, n = 66). On exposure to 2.5 mM Ca++, the cells depolarize reversibly to a potential of -34 +/- 8 mV (mean +/- SD). Depolarization to this value is complete in approximately 2-4 min, and repolarization on return to 1.5 mM Ca++ takes about the same time. The depolarizing action of high Ca++ is mimicked by all divalent cations tested, with the following order of effectiveness: Ca++ greater than Sr++ greater than Mg++ greater than Ba++ for alkali-earth metals, and Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Zn++ for transition metals. Input resistance in 1.5 mM Ca++ was 24.35 +/- 14 M omega (mean +/- SD) and increased by an average factor of 2.43 +/- 0.8 after switching to 2.5 mM Ca++. The low value of input resistance suggests that cells are coupled by low-resistance junctions. The resting potential in low Ca++ is quite insensitive to removal of external Na+ or Cl-, but very sensitive to changes in external K+. Cells depolarize by 61 mV for a 10- fold increase in external K+. In high Ca++, membrane potential is less sensitive to an increase in external K+ and is unchanged by increasing K+ from 5 to 25 mM. Depolarization evoked by high Ca++ may be slowed, but is unchanged in amplitude by removal of external Na+ or Cl-. Organic (D600) and inorganic (Co++, Cd++, and Mn++) blockers of the Ca++ channels do not interfere with the electrical response to Ca++ changes. Our results show remarkable parallels to previous observations on the control of parathormone (PTH) release by Ca++. They suggest an association between membrane voltage and secretion that is very unusual: parathyroid cells secrete when fully polarized, and secrete less when depolarized. The extraordinary sensitivity of parathyroid cells to divalent cations leads us to hypothesize the existence in their membranes of a divalent cation receptor that controls membrane permeability (possibly to K+) and PTH secretion.  相似文献   

12.
The processing of human erythrocytes disclosed changes in Mg-ATPase activity following action of Pb2+ and Nile blue, and changes of permeability of K+ after treatment with Nile blue. The obtained results and those from previous papers can be summarized as follows : Substances decreasing the activity of stimulated membrane Mg-ATPase (spectrin-dependent ATPase) in red blood cells increase the passive permeability to K+, and substances increasing the stimulated Mg-ATPase activity decrease the passive permeability to K+. A hypothesis is proposed that the conformation of Mg-ATPase is secondarily reflected in the state of the proper path for K+ transport through the membrane; thus the rate of passive permeability to K+ is influenced.  相似文献   

13.
Mechanical deformation of normal ATP-replete human erythrocytes increased their permeability to Ca2+ sufficiently to turn on the Ca(2+)-activated K+ channel (the Gardos channel). When Ca2+ is absent, mechanical deformation of normal erythrocytes induces an equivalent increase the permeability of both Na+ and K+, In the presence of 0.1 to 1 mM Ca2+, a further increase in the K+ efflux rate was seen. There was no increase in Na+ flux above that induced by deformation itself. The involvement of the Ca(2+)-activated H channel was verified by showing the specific inhibitors of the channel, quinine and charybdotoxin, prevent the Ca(2+)-induced increase in K+ efflux. These results are consistent with a model of sickle cell dehydration proposed by Bookchin et al. ((1987) Prog. Clin. Biol. Res. 240, 193-200). The estimated rate of Ca2+ entry under these conditions (37 degrees C, 1000 dyne/cm2, and laminar shear) was about 1 mmol/loc per h.  相似文献   

14.
The activity of Na+, K(+)-ATPase in SHR erythrocytes treated with saponin is increased by 30-40% as compared to the Brown Norway (BN.lx) strain whereas the activity of Ca(2+)-ATPase is decreased by 20-30%. Passive permeability of SHR erythrocytes determined by 86Rb influx is increased by 20-30%. In the presence of orthovanadate erythrocytes of SHR accumulate 45Ca by 80% more than BN.lx red cells. There was no difference in Na+/H+ exchange between erythrocytes of SHR and BN.lx animals.  相似文献   

15.
The effect of Ca+2 on the transport and intracellular distribution of Na+ and K+ in Ehrlich ascites tumor cells was investigated in an effort to establish the mechanism of Ca+2-induced hyperpolarization of the cell membrane. Inclusion of Ca+2 (2 mM) in the incubation medium leads to reduced cytoplasmic concentrations of Na+, K+ and Cl- in steady cells. In cells inhibited by ouabain, Ca+2 causes a 41% decrease in the rate of net K+ loss, but is without effect on the rate of net Na+ accumulation. Net K+ flux is reduced by 50%, while net Na+ flux is unchanged in the transport-inhibited cells. The membrane potential of cells in Ca+2-free medium (-13.9 +/- 0.8 mV) is unaffected by the addition of ouabain. However, the potential of cells in Ca+2-containing medium (-23.3 +/- 1.2 mV) declines in one hour after the addition of ouabain to values comparable to those of control cells (-15.2 +/- 0.7 mV). The results of these experiments are consistent with the postulation that Ca+2 exerts two effects on Na+ and K+ transport. First, Ca+2 reduces the membrane permeability to K+ by 25%. Second, Ca+2 alters the coupling of the Na/K active transport mechanism leading to an electrogenic hyperpolarization of the membrane.  相似文献   

16.
The sensitivity of the (Na+ + K+)-ATPase in human red cell membranes to inhibition by Ca2+ is markedly increased by the addition of diluted cytoplasm from hemolyzed human red blood cells. The concentration of Ca2+ causing 50% inhibition of the (Na+ + K+)-ATPase is shifted from greater than 50 microM free Ca2+ in the absence of hemolysate to less than 10 microM free Ca2+ when hemolysate diluted 1:60 compared to in vivo concentrations is added to the assay mixture. Boiling the hemolysate destroys its ability to increase the sensitivity of the (Na+ + K+)-ATPase to Ca2+. Proteins extracted from the membrane in the presence of EDTA and concentrated on an Amicon PM 30 membrane increased the sensitivity of the (Na+ + K+)-ATPase to Ca2+ in a dose-dependent fashion, causing over 80% inhibition of the (Na+ + K+)-ATPase at 10 microM free Ca2+ at the highest concentration of the extract tested. The active factor in this membrane extract is Ca2+-dependent, because it had no effect on the (Na+ + K+)-ATPase in the absence of Ca2+. Trypsin digestion prior to the assay destroyed the ability of this protein extract to increase the sensitivity of the (Na+ + K+)-ATPase to Ca2+.  相似文献   

17.
Techniques are described for the rapid loading of intact human red cells with radioactive isotopes of alkali cations or Ca2+ by using ionophorous compounds (nigericin, gramicidin D and A 23187). Loading was rapid and efficient if the membrane potential of the cells was rendered more negative inside. After cation loading the ionophores could be bound to albumin and removed by repeated washings. The ATP and 2,3-DPG contents of the cells were practically unaltered by this treatment. Passive membrane permeability to Na+ and Ca2+ returned to normal. Loaded erythrocytes pumped out Na+ in a ouabain-sensitive and Ca2+ in a lanthanum-sensitive way. Ca2+ -loaded red cells were microspherocytes and exhibited a rapid K+ -efflux. Parallel with the extrusion of Ca2+ cells regained their biconcave shape and normal passive permeability to K+.  相似文献   

18.
The effects of extracellular volume expansion (EVE) on the major sodium transport systems and sodium and potassium contents in rat erythrocytes have been examined in the present study. Study has been performed in anesthetized Wistar rat weighing about 300 g. Acute extracellular volume expansion (EVE) was induced by a constant intravenous saline infusion (3% body wt, 3 hours). Rats anaesthetized and catheterized but not expanded were used as controls. Arterial blood samples from control and expanded rats were obtained at the same time, and assayed immediately. Intracellular sodium and potassium concentration and ouabain sensitive (Na(+)-K(+)-pump) and bumetanide sensitive (Na(+)-K(+)-cotransport system) outward Na+ fluxes in erythrocytes were measured. The effect of plasma on erythrocyte transport was also analyzed by measuring 86Rb uptake. Neither of two plasma cations (Na+ and K+) were modified by the EVE. Also intracellular Na+ and K+ levels remained unvariable. Total Na+ efflux was not modified by EVE, but pump-mediated Na+ efflux was smaller after than before EVE. The ouabain-inhibible Na+ efflux rate constant decreased after EVE (from 687 +/- 81 to 525 +/- 29 h-1 x 10(-3); P less than 0.05). Both Na(+)-K(+)cotransport-mediated Na+ efflux and passive permeability increased significantly after EVE. The incubation with plasma from saline-infused animals induced a significant decrease in Rb uptake rate constant, that was not observed after incubation with plasma from non-expanded rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The data on erythrocyte membrane permeability for Na and K ions, obtained in the studies of Na+-K+ cotransport in erythrocytes of 38 patients with essential hypertension, stage I and II, 9 patients with borderline hypertension and 12 patients with symptomatic (renal) hypertension are reviewed. The data demonstrate that Na+-K+ cotransport in Na+ loaded and K+-depleted erythrocytes under the effect of P-chlormercuribenzoate was considerably reduced in patients with essential hypertension and borderline hypertension than in the control group. No deviations from the normal Na+-K+ cotransport were observed in renal hypertension. Disturbances of erythrocyte membrane permeability have been also revealed in practically healthy subjects (15 cases) with family history of hypertension.  相似文献   

20.
H K Talib  J Zicha 《Life sciences》1992,50(14):1021-1030
The alteration of red cell Na+ content (Na+i), its causes and the possible relationship to the development of DOCA-salt hypertension were studied in Brattleboro rats. A pronounced hypertension developed in heterozygous (non-DI) animals that synthesize vasopressin (VP) although no substantial Na+i elevation was observed in their erythrocytes. In contrast, Na+i rose progressively in red cells of homozygous VP-deficient (DI) rats in which only marginal increase of systolic blood pressure was found after six weeks of DOCA-salt regimen. DOCA-salt treatment of non-DI rats did not cause major alterations in ouabain-resistant (OR) net Na+ uptake or ouabain-sensitive (OS) net Na+ extrusion but moderately increased furosemide-sensitive (FS) Rb+ uptake. The same treatment of DI rats doubled Na+i by an increased OR net Na+ uptake (due to a major elevation in both Na(+)-K+ cotransport and Na+ leak). Consequently, OS net Na+ extrusion was augmented in red cells of these animals. This was accompanied by an about threefold elevated FS Rb+ uptake. It can be concluded that a) the alterations of OR and/or OS Na+ or K+ transport observed in erythrocytes of Brattleboro DI rats are not essential for the development of severe DOCA-salt hypertension, b) red cell ion transport abnormalities revealed in DOCA-salt treated DI rats might be rather ascribed to cell potassium depletion, and c) increased inward Na(+)-K+ cotransport and Na+ leak causes red cell Na+i elevation that stimulates Na(+)-K+ pump activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号