首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the positively charged amphiphilic compound cetyltrimethyl ammonium bromide (CTAB) on palmitate- and laurate-induced uncoupling and on carboxyatractylate and glutamate recoupling effects in liver mitochondria have been studied. CTAB (40 M) in the presence of 3 mM MgCl2 had little (if any) effect on the palmitic acid-stimulated respiration of mitochondria; the glutamate recoupling effect increased, and the carboxyatractylate recoupling effect decreased to the same degree with the combined effect (about 80%) remaining unchanged. Thus, CTAB decreases the ADP/ATP antiporter involvement and increases to the same extent the aspartate/glutamate antiporter involvement in the fatty acid-induced uncoupling. The carboxyatractylate and glutamate recoupling effects were less pH dependent in the presence of CTAB than in its absence. These data could be interpreted with the assumption that fatty acid anions are more accessible to the ADP/ATP antiporter and their neutral forms are more accessible to the aspartate/glutamate antiporter, and that CTAB changes the relative anion carrier involvement in the fatty acid-induced uncoupling as it forms neutral complexes with fatty acid anions.  相似文献   

2.
The effect of ethanol on the uncoupling activity of palmitate and recoupling activities of carboxyatractylate and glutamate was studied in liver mitochondria at various Mg2+ concentrations and medium pH values (7.0, 7.4, and 7.8). Ethanol taken at concentration of 0.25 M had no effect on the uncoupling activity of palmitic acid in the presence of 2 mM MgCl2 and decreased the recoupling effects of carboxyatractylate and glutamate added to mitochondria either just before or after the fatty acid. However, ethanol did not modify the overall recoupling effect of carboxyatractylate and glutamate taken in combination. The effect of ethanol decreased as medium pH was decreased to 7.0. Elevated concentration of Mg2+ (up to 8 mM) inhibits the uncoupling effect of palmitate. Ethanol eliminates substantially the recoupling effect of Mg2+ under these conditions, but does not influence the recoupling effects of carboxyatractylate and glutamate. It is inferred that ADP/ATP and aspartate/glutamate antiporters are involved in uncoupling function as single uncoupling complex with the common fatty acid pool. Fatty acid molecules gain the ability to migrate under the action of ethanol: from ADP/ATP antiporter to aspartate/glutamate antiporter on addition of carboxyatractylate and in opposite direction on addition of glutamate. Possible mechanisms of fatty acid translocation from one transporter to another are discussed.  相似文献   

3.
In the presence of oligomycin, EGTA, and magnesium ions, the protonophore uncoupling activity of palmitate (V(Pal)) is determined as the ratio of the acceleration of respiration with palmitate to its concentration. Under these conditions, V(Pal) in liver mitochondria of one-month-old rats with the body weight of 50 g is 1.46-fold higher than in liver mitochondria of adult rats with the body weight of 250 g, whereas the uncoupling activity of FCCP does not depend on the age of the animals. The difference in V(Pal) is mainly due to its component insensitive to carboxyatractylate and glutamate (V(Ins)). This value is 2.9-fold higher in mitochondria of one-month-old rats than in those of adult rats. The protonophore activity of palmitate is similar in liver mitochondria of four-day-old and adult rats. In liver mitochondria of adult mammals (mouse, rat, guinea pig, rabbit), V(Pal) decreases with increase in the body weight of the animals. In double logarithmic coordinates, the dependence of the V(Pal) value on the body weight is linear with slope angle tangent of -0.18. The V(Pal) value is mainly contributed by its component V(Ins). In the presence of calcium ions, palmitate induces the nonspecific permeability of the inner membrane of liver mitochondria (pore opening). This Ca2+-dependent uncoupling effect of palmitate is less pronounced in mitochondria of one-month-old rats than in those of adult rats. In mitochondria of adult animals (mice, rats, and guinea pigs), the Ca2+-dependent uncoupling activity of palmitate is virtually the same. It is concluded that the protonophore uncoupling effect of palmitate in liver mitochondria of mammals, unlike its Ca2+-dependent effect, is associated with thermogenesis at rest and also with production of additional heat on cooling of the animals.  相似文献   

4.
A concise review is given of the research in our laboratory on the ADP/ATP carrier (AAC) and the uncoupling protein (UCP). Although homologous proteins, their widely different functions and contrasts are stressed. The pioneer role of research on the AAC, not only for the mitochondrial but also for other carriers, and the present state of their structure-function relationship is reviewed. The function of UCP as a highly regulated H+ carrier is described in contrast to the largely unregulated ADP/ATP exchange in AAC. General principles of carrier catalysis as derived from studies on the AAC and UCP are elucidated.  相似文献   

5.
This paper considers stages of the search (initiated by V. P. Skulachev) for a receptor protein for fatty acids that is involved in their uncoupling effect. Based on these studies, mechanism of the ADP/ATP antiporter involvement in the uncoupling induced by fatty acids was proposed (Skulachev, V. P. (1991) FEBS Lett., 294, 158– 162). New data (suppression by carboxyatractylate of the SDS-induced uncoupling, pH-dependence of the ADP/ATP and the glutamate/aspartate antiporter contributions to the uncoupling, etc.) led to modification of this hypothesis. During discussion of the uncoupling effect of fatty acids caused by opening of the Ca2+-dependent pore, special attention is given to the effects of carboxyatractylate added in the presence of ADP. The functioning of the uncoupling protein UCP2 in kidney mitochondria is considered, as well as the diversity observed by us in effects of 200 µM GDP on decrease in under the influence of oleic acid added after H2O2 (in the presence of succinate, oligomycin, malonate). A speculative explanation of the findings is as follows: 1) products of lipid and/or fatty acid peroxidation (PPO)modify the ADP/ATP antiporter in such a way that its involvement in the fatty acid-induced uncoupling is suppressed by GDP; 2) GDP increases the PPO concentration in the matrix by suppression of efflux of fatty acid hydroperoxide anions through the UCP (Goglia, F., and Skulachev, V. P. (2003) FASEB, 17, 1585–1591)and/or of efflux of PPO anions with involvement of the GDP-sensitive ADP/ATP antiporter; 3) PPO can potentiate the oleate-induced decrease in due to inhibition of succinate oxidation.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 197–202.Original Russian Text Copyright © 2005 by Mokhova, Khailova.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

6.
7.
The effect of acetoacetate on palmitate-induced uncoupling with the involvement of ADP/ATP antiporter and aspartate/glutamate antiporter has been studied in liver mitochondria. The incubation of mitochondria with acetoacetate during succinate oxidation in the presence of rotenone, oligomycin, and EGTA suppresses the accumulation of conjugated dienes. This is considered as a display of antioxidant effect of acetoacetate. Under these conditions, acetoacetate does not influence the respiration of mitochondria in the absence or presence of palmitate but eliminates the ability of carboxyatractylate or aspartate separately to suppress the uncoupling effect of this fatty acid. The action of acetoacetate is eliminated by β-hydroxybutyrate or thiourea, but not by the antioxidant Trolox. In the absence of acetoacetate, the palmitate-induced uncoupling is limited by a stage sensitive to carboxyatractylate (ADP/ATP antiporter) or aspartate (aspartate/glutamate antiporter); in its presence, it is limited by a stage insensitive to the effect of these agents. In the presence of Trolox, ADP suppresses the uncoupling action of palmitate to the same degree as carboxyatractylate. Under these conditions, acetoacetate eliminates the recoupling effects of ADP and aspartate, including their joint action. This effect of acetoacetate is eliminated by β-hydroxybutyrate or thiourea. It is supposed that the stimulating effect of acetoacetate is caused both by increase in the rate of transfer of fatty acid anion from the inner monolayer of the membrane to the outer one, which involves the ADP/ATP antiporter and aspartate/glutamate antiporter, and by elimination of the ability of ADP to inhibit this transport. Under conditions of excessive production of reactive oxygen species in mitochondria at a high membrane potential and in the presence of small amounts of fatty acids, such effect of acetoacetate can be considered as one of the mechanisms of antioxidant protection.  相似文献   

8.
9.
Data are raeviewed on mitochondrial systems whose functioning in plants diminishes the efficiency of oxidative phosphorylation. The involvement in this process of alternative oxidase, thermogenin-like uncoupling proteins, a 310 kD stress protein, free fatty acids, and the ADP/ATP antiporter is considered. The role of these systems is discussed with regard to thermogenesis, controlled production of reactive oxygen species, and regulation of bioenergetics and metabolism.  相似文献   

10.
In liver mitochondria, the phosphate carrier is involved in protonophoric uncoupling effect of fatty acids together with ADP/ATP and aspartate/glutamate antiporters (Samartsev et al. 2003. Biochemistry (Moscow). 68, 618–629). Liver mitochondria depleted of endogenous oxidation substrates (exhausted mitochondria) have been used in the present work. In these mitochondria, like in the intact liver mitochondria, the specific inhibitor of ADP/ATP antiporter (carboxyatractylate) and the substrate of aspartate/glutamate antiporter (aspartate) suppress the uncoupling activity of palmitic acid. It is shown that in exhausted mitochondria the substrate of phosphate carrier (inorganic phosphate) and its nonspecific inhibitor mersalyl partially suppress palmitic acid-induced uncoupling due to decrease in the component of uncoupling activity sensitive to carboxyatractylate and aspartate. In the presence of inorganic phosphate or mersalyl, carboxyatractylate and aspartate added separately subsequent to palmitic acid do not suppress its uncoupling activity. They are effective only when added jointly. In the presence of thiourea or pyruvate, such effects of inorganic phosphate and mersalyl are not observed. It is supposed that in the presence of inorganic phosphate or mersalyl and under the condition of oxidation of critical SH-groups in mitochondria, the phosphate carrier, ADP/ATP antiporter, and aspartate/glutamate antiporter are involved in uncoupling function together with the general fatty acid pool as an uncoupling complex. The role of phosphate carrier in this complex may consist in facilitation of lateral transfer of the fatty acid molecules from one antiporter to another.  相似文献   

11.
Na/K-ATPase prepared from cerebellum granule cells of 10-12-day-old mice is inhibited by glutamate and its agonists, NMDA (ligand for ionotropic receptors) and ACPD (ligand for metabotropic receptors). The inhibition is specific and prevented by subsequent antagonists (MK-801 for ionotropic NMDA-receptors and MCPG for metabotropic receptors). The inhibiting effect of NMDA is significantly reversed by cysteine and that of ACPD by chelerythrine or indolyl maleimide. It is concluded that ionotropic receptors inhibit Na/K-ATPase because of intracellular production of reactive oxygen species, and metabotropic receptors mediate their effect via protein kinase C.  相似文献   

12.
13.
The concept of trade-offs is central to our understanding of life-history evolution. The underlying mechanisms, however, have been little studied. Oxidative stress results from a mismatch between the production of damaging reactive oxygen species (ROS) and the organism's capacity to mitigate their damaging effects. Managing oxidative stress is likely to be a major determinant of life histories, as virtually all activities generate ROS. There is a recent burgeoning of interest in how oxidative stress is related to different components of animal performance. The emphasis to date has been on immediate or short-term effects, but there is an increasing realization that oxidative stress will influence life histories over longer time scales. The concept of oxidative stress is currently used somewhat loosely by many ecologists, and the erroneous assumption often made that dietary antioxidants are necessarily the major line of defence against ROS-induced damage. We summarize current knowledge on how oxidative stress occurs and the different methods for measuring it, and highlight where ecologists can be too simplistic in their approach. We critically review the potential role of oxidative stress in mediating life-history trade-offs, and present a framework for formulating appropriate hypotheses and guiding experimental design. We indicate throughout potentially fruitful areas for further research.  相似文献   

14.
The mitochondrial oxidative theory of aging has been repeatedly investigated over the past 30 years by comparing the efflux of hydrogen peroxide (H2O2) from isolated mitochondria of long‐ and short‐lived species using horseradish peroxidase‐based assays. However, a clear consensus regarding the relationship between H2O2 production rates and longevity has not emerged. Concomitantly, novel insights into the mechanisms of reactive oxygen species (ROS) handling by mitochondria themselves should have raised concerns about the validity of this experimental approach. Here, we review pitfalls of the horseradish peroxidase/amplex red detection system for the measurement of mitochondrial ROS formation rates, with an emphasis on longevity studies. Importantly, antioxidant systems in the mitochondrial matrix are often capable of scavenging H2O2 faster than mitochondria produce it. As a consequence, as much as 84% of the H2O2 produced by mitochondria may be consumed before it diffuses into the reaction medium, where it can be detected by the horseradish peroxidase/amplex red system, this proportion is likely not consistent across species. Furthermore, previous studies often used substrates that elicit H2O2 formation at a much higher rate than in physiological conditions and at sites of secondary importance in vivo. Recent evidence suggests that the activity of matrix antioxidants may correlate with longevity instead of the rate of H2O2 formation. We conclude that past studies have been methodologically insufficient to address the putative relationship between longevity and mitochondrial ROS. Thus, novel methodological approaches are required that more accurately encompass mitochondrial ROS metabolism.  相似文献   

15.
The body of evidence from the past three decades demonstrates that oxidative stress can be involved in several diseases. This study aims to summarise the current state of knowledge on the association between oxidative stress and the pathogenesis of some characteristic to the biological systems diseases and aging process. This review also presents the effect of physical activity on redox homeostasis. There is strong evidence from studies for participation of reactive oxygen and nitrogen species in pathogenesis of acute and chronic diseases based on animal models and human studies. Elevated levels of pro-oxidants and various markers of the oxidative stress and cells and tissues damage linked with pathogenesis of cancer, atherosclerosis, neurodegenerative diseases hypertension, diabetes mellitus, cardiovascular disease, atherosclerosis, reproductive system diseases, and aging were reported. Evidence confirmed that inflammation contributes widely to multiple chronic diseases and is closely linked with oxidative stress. Regular moderate physical activity regulates oxidative stress enhancing cellular antioxidant defence mechanisms, whereas acute exercise not preceded by training can alter cellular redox homeostasis towards higher level of oxidative stress. Future studies are needed to clarify the multifaceted effects of reactive oxygen/nitrogen species on cells and tissues and to continue study on the biochemical roles of antioxidants and physical activity in prevention of oxidative stress-related tissue injury.  相似文献   

16.
As rapid changes in climate threaten global crop yields, an understanding of plant heat stress tolerance is increasingly relevant. Heat stress tolerance involves the coordinated action of many cellular processes and is particularly energy demanding. We acquired a knockout mutant and generated knockdown lines in Arabidopsis thaliana of the d subunit of mitochondrial ATP synthase (gene name: ATPQ, AT3G52300, referred to hereafter as ATPd), a subunit of the peripheral stalk, and used these to investigate the phenotypic significance of this subunit in normal growth and heat stress tolerance. Homozygous knockout mutants for ATPd could not be obtained due to gametophytic defects, while heterozygotes possess no visible phenotype. Therefore, we used RNA interference to create knockdown plant lines for further studies. Proteomic analysis and blue native gels revealed that ATPd downregulation impairs only subunits of the mitochondrial ATP synthase (complex V). Knockdown plants were more sensitive to heat stress, had abnormal leaf morphology, and were severely slow growing compared to wild type. These results indicate that ATPd plays a crucial role in proper function of the mitochondrial ATP synthase holoenzyme, which, when reduced, leads to wide-ranging defects in energy-demanding cellular processes. In knockdown plants, more hydrogen peroxide accumulated and mitochondrial dysfunction stimulon (MDS) genes were activated. These data establish the essential structural role of ATPd and support the importance of complex V in normal plant growth, and provide new information about its requirement for heat stress tolerance.  相似文献   

17.
Life‐history stages such as reproduction and molt are energetically costly. Reproductive costs include those associated not only with offspring production, but also protecting and provisioning young. Costs typically associated with molting include decreased thermoregulatory and locomotive performance, and increased metabolic and nutritional costs. Energetic demands may disrupt homeostasis, particularly in terms of its maintenance (e.g., oxidative stress and immunity). Few investigators have explored the relationship between effort (increased metabolic rate) and oxidative status and stress by comparing life‐history stages with different energetic demands. However, comparative studies are crucial for understanding the processes of energy allocation and their consequences for different physiological functions. Our objective was to determine how two highly demanding life‐history stages, breeding and molting, affected oxidative balance in Chinstrap Penguins (Pygoscelis antarcticus), a species where these two activities do not overlap. We found that the heterophil/lymphocyte (H/L) ratio was significantly higher during breeding than molting; oxidative damage was also higher during breeding. In contrast, we found no significant differences between these stages in total antioxidant capacity. We also found sex differences, with males having greater oxidative damage than females. Our results suggest that breeding is more stressful and more demanding for Chinstrap Penguins than molting, and provide further support for the relationship between effort, in terms of increased metabolic rate, and oxidative balance.  相似文献   

18.
At low Ca2+ concentrations the pore of the inner mitochondrial membrane can open in substates with lower permeability (Hunter, D. R., and Haworth, R. A. (1979) Arch. Biochem. Biophys., 195, 468-477). Recently, we showed that Ca2+ loading of mitochondria augments the cyclosporin A-dependent decrease in transmembrane potential () across the inner mitochondrial membrane caused by 10 M myristic acid but does not affect the stimulation of respiration by this fatty acid. We have proposed that in our experiments the pore opened in a substate with lower permeability rather than in the classic state (Bodrova, M. E., et al. (2000) IUBMB Life, 50, 189-194). Here we show that under conditions lowering the probability of classic pore opening in Ca2+-loaded mitochondria myristic acid induces the cyclosporin A-sensitive decrease and mitochondrial swelling more effectively than uncoupler SF6847 does, though their protonophoric activities are equal. In the absence of Pi and presence of succinate and rotenone (with or without glutamate) cyclosporin A either reversed or only stopped decrease induced by 5 M myristic acid and 5 M Ca2+. In the last case nigericin, when added after cyclosporin A, reversed the decrease, and the following addition of EGTA produced only a weak (if any) increase. In Pi-containing medium (in the presence of glutamate and malate) cyclosporin A reversed the decrease. These data show that the cyclosporin A-sensitive decrease in by low concentrations of fatty acids and Ca2+ cannot be explained by specific uncoupling effect of fatty acid. We propose that: 1) low concentrations of Ca2+ and fatty acid induce the pore opening in a substate with a selective cation permeability, and the cyclosporin A-sensitive decrease results from a conversion of to pH gradient due to the electrogenic cation transport in mitochondria; 2) the ADP/ATP-antiporter is involved in this process; 3) higher efficiency of fatty acid compared to SF6847 in the Ca2+-dependent pore opening seems to be due to its interaction with the nucleotide-binding site of the ADP/ATP-antiporter and higher affinity of fatty acids to cations.  相似文献   

19.
To assess the mechanism by which mitochondrial permeability transition (MPT) is induced by the nonpolar carboxylic acids, we investigated the effects of flufenamic acid (3-trifluoromethyl diphenylamine-2-carboxylic acid, FA) on mitochondrial respiration, electrical transmembrane potential difference (), osmotic swelling, Ca2+ efflux, NAD(P)H oxidation and reactive oxygen species (ROS) generation. Succinate-energized isolated rat liver mitochondria incubated in the absence or presence of 10 M Ca2+, 5 M ruthenium red (RR) or 1 M cyclosporin A (CsA) were used. The dose response-curves for both respiration release and dissipation were nearly linear, presenting an IC50 of approximately 10 M and reaching saturation within 25-50 M, indicating that FA causes mitochondrial uncoupling by a protonophoric mechanism. Within this same concentration range FA showed the ability to induce MPT in energized mitochondria incubated with 10 M Ca2+, followed by dissipation and Ca2+ efflux, and even in deenergized mitochondria incubated with 0.5 mM Ca2+. ADP, Mg2+, trifluoperazine (TFP) and N-ethylmaleimide (NEM) reduced the extent of FA-promoted swelling in energized mitochondria by approximately one half, whereas dithiothreitol (DTT) slightly enhanced it. NAD(P)H oxidation and ROS generation (H2O2 production) by mitochondria were markedly stimulated by FA; these responses were partly prevented by CsA, suggesting that they may be implicated as both a cause and effect of FA-induced MPT. FA incubated with mitochondria under swelling assay conditions caused a decrease of approximately 40% in the content of protein thiol groups reacting with 5,5-dithiobis(2-nitrobenzoic acid) (DTNB). The present results are consistent with a ROS-intermediated sensitization of MPT by a direct or indirect FA interaction with inner mitochondrial membrane at a site which is in equilibrium with the NAD(P)H pool, namely thiol groups of integral membrane proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号